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Reinforced concrete and elastic-tensionless strips transversally loaded and restrained against
longitudinal displacements at supports are considered. The support restraints induce important
axial forces and that results in a highly nonlinear and unstable character of the structure
response. A commercial FEM code is used and the results are compared with those obtained
from an approximate approach based upon the post-yield methodology, proposed years ago
by the authors. The latter approach neglects elastic flexural deformations but accounts for
axial compliance of the system and furnishes simple analytical expressions for the load vs.
displacement relations. It appears from the FEM analysis that the flexural compliance has a
negligible impact on the peak-load behaviour. The approximate approach gives satisfactory
results, when compliance moduli for the structure and for restraining walls are appropriately
chosen. Benchmark cases considered allowed for a proposition concerning determination of these
moduli.

1. INTRODUCTION

The phenomenon of arching action induces an important rise in the strength
of beams and plates restrained against lateral displacements at supports, when
the material is “non-symmetric” (with different elastic and/or plastic response
to compression and tension). This fact has been well known since many years;
however, it is rarely taken into account in the engineering practice. The reason of
this reticence is a highly unstable character of the phenomenon; clamped concrete
structures under static loads may collapse in an abrupt dynamic manner (see,
e.g., [1]).

If the plate supports restrain free longitidinal displacements and if the ma-
terial is weaker in strength and/or elastic modulus, in tension than in compres-
sion, bending under transversal loads is accompanied by important compressive
membrane forces. The forces appear from the very beginning of the loading
process, whereas the well-known tensile membrane response is negligible until
displacements become really large. The compressive forces, when taken into ac-
count, provide an important rise in the load-carrying capacity of the structure, in
comparison with the results obtained from a purely flexural analysis. The latter
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appears, in the case considered, to be kinematically inadmissible. This fact ex-
plains a known paradox concerning plastic response of reinforced concrete plates:
tests give frequently collapse loads superior to the corresponding upper bounds
of the load obtained analytically. This discrepancy cannot be quantitatively ex-
plained by the effects of reinforcement hardening and large deflections neglected
in the limit analysis.

However, when a consistent limit analysis that satisfies the “internal compat-
ibility” of flexural collapse [2] and accounts for the corresponding axial forces is
used, the results strongly overestimate the structure carrying capacity. This is
due to the fact that the structure undergoes simultaneous bending and compres-
sion and, therefore, its response is very sensitive to geometry changes neglected
in the limit analysis. These changes may be accounted for in the framework of an
extended limit analysis known as the post-yield approach, [3-6] or by using its
version inherent to the deformation theory [1, 7, 8]. In this way, instantaneous
collapse loads may be easily obtained plotted against increasing deformation of
the structure. However, because of early elastic deformations, the real ultimate
peak load is always lower than the initial limit-analysis value obtained for unde-
formed structure. The rigid-plastic approach cannot determine the deformation
at which, in reality, the collapse appears. Therefore, for practical purposes the
ultimate-peak load has to be determined as the instantaneous collapse load of
the structure deformed up to an assigned displacement value provided by experi-
mental data (8, 9].

The ultimate peak load may be obtained analytically from the post-yield
analysis [13], when taking into account only membrane elastic compressibility
of the structure and neglecting the corresponding flexural deformations. Unfor-
tunately, a corresponding compliance modulus should be somewhat arbitrarily
chosen. In the sixties and early seventies, when the problem was “en vogue”, a
complete elastic-plastic large-displacement analysis of the problem was practi-
cally impossible and approximate approaches were the only way to deal with it.

Taking into account that the unstable structural response is extremely sen-
sitive to the support conditions and material data, reticence of the structural
engineers to apply the approximate approaches may be easily understood. How-
ever, one can wonder why the effect, whose importance for the structure strength
has been confirmed in many experimental studies [8-12], does not attract at-
tention nowadays, when commercial computational FEM codes permit, at least
theoretically, to proceed with a complete nonlinear structural analysis. We be-
lieve that this reticence results from the uncertainty and complexity concerning
determination and introduction of the input data needed in the FEM codes,
as well as from random numerical problems accompanying strongly nonlinear
FEM analysis. Therefore, it seems necessary to furnish the designer with a tool
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enabling him to deal with the discussed problem, with the complexity level com-
parable to the level of the analysis based on the strength of materials. Therefore,
we revisited the problem using our old approach [13] and comparing its results
to a nonlinear elastic-plastic incremental simulation using a FEM code [14]. The
goal is to evaluate the importance of the flexural deformability neglected in the
approximate analysis [13] and to allow for an appropriate choice of the values
for the parameters needed in the latter.

The considerations presented here are limited to cases of beams and strips,
but the approach may be extended (see [6, 13]) to slabs.

2. POST-YIELD ANALYSIS

The principle of the post-yield approach consists in the use of the limit analy-
sis techniques for determination of instantaneous collapse loads of the struc-
ture deformed to a chosen level. In this way a sequence of collapse loads is
obtained, which — when plotted against a reference displacement — describes a
load-deflection curve of the quasi-static structure response. This post-yield curve
characterizes geometrical hardening (or softening) of the structure. The collapse
mode describing the deformed configuration of the structure may be either a con-
tinuation of the incipient plastic flow or, if automatic procedures are used (e.g.,
in [15]), it may be updated at each step of the deformation process. Hence, the
deformation described by a sequence of collapse modes, is dependent exclusively
on purely plastic deformation.

Such an approach, neglecting the contribution of elastic deformation to con-
figuration changes, can describe relatively well the advanced deformation pro-
cesses, when elastic strains are negligible in comparison with the plastic ones.
In an early phase of the process, elastic deformation may be of the same order
or more important than the purely plastic one. However, in the early phase the
changes of configuration due to deformation are, in most cases, of small impor-
tance. Therefore, the rigid-plastic model is acceptable in both the cases. This
approach using, as follows from the limit analysis theory, the associated plastic
flow rule, was applied to many structural cases, e.g., to plates [4-6, 16] and
frames [17]. It was also generalized to the analysis of inadaptation processes [18].
A conceptually identical approach but using a deformation-type plastic theory
instead of the flow rule, was applied to concrete-oriented analyses [1, 7-9].

Unfortunately, the rigid-plastic post-yield approach appears to be unsatisfac-
tory in the case of an unstable structure behaviour at the early phase of the
deformation. For example, elastic deformations contribute considerably to the
nonlinear character of the response for slender structures undergoing simulta-
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neous bending and axial compression. This is, namely, the case of structures
built of a material with different yield points in compression and tension. Impor-
tant compressive axial forces appear from the very beginning of the deformation
process, when such a structure undergoes bending under transversal loads and
support restraints prevent free longitudinal displacements. To visualize the im-
portance of this effect, load-deflection curves are given in Fig.1a for a clamped
weakly reinforced concrete strip (Fig.2) loaded by a concentrated force at the
midspan. The results concern the cases of restrained and free longitudinal dis-
placements at supports. They are obtained from an incremental FEM simulation
using elastic-perfectly plastic tensionless model for the concrete. Details on the
FEM analysis are given in the next section. The rigid-plastic curve obtained
from the post-yield analysis in the case of restrained supports will commence
with the maximum value at zero deflection and will strongly differ, at the early
stage, from the real curve. In the case of free longitudinal displacements at sup-
ports, the influence of the initial geometrical nonlinearity is indiscernible and the
rigid-plastic model represents well the response. The early phase of the response
is given in details in Fig.1b to show that the restrained strip is significantly
more rigid in the elastic (but nonlinear because of the tensionless response of the
concrete) and in the elastic-plastic phases than the unrestrained strip.

To avoid errors induced in the early phase by the rigid-plastic model, elastic
deformations must be accounted for in some manner. The compressive axial
force is responsible for the unstable character of the structure response and the
evolution of this force depends upon the elastic compliance in the longitudinal
direction. Therefore, this compliance should be necessarily taken into account.
On the other hand, elastic deformations corresponding to curvature changes
in elastic and elastic-plastic zones do not influence qualitatively the structure
behaviour. These observations became a basis of an approximate method for the
analysis of the arching-action behaviour [13]. This approach neglecting flexural
elastic-plastic deformations may be applied in_the framework of the post-yield
methodology. A similar approach was applied later to circular plates with partial
fixity [19] and to the punching analysis of concrete slabs {20]. We recall below
its main results, following [13]. For sake of self-consistency of the paper, details
on the assumptions and the procedure are recalled in the Appendix.

The example used to illustrate the method is a clamped centrally loaded strip
(Fig.2) of span L and height of the cross-section h. It is built of a tensionless
elastic-perfectly plastic material with the yield stress o.. Reinforcement layers of
the area A and the yield stress o, may be posed at one or two external faces of
the cross-section.

Flastic compliance in the longitudinal direction of the support and of the strip
is modeled by appropriate springs shown in Fig.2; the support-spring model is
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F1G. 2. Clamped strip with the collapse mode assumed in the post-yield analysis; elastic
compliance is modeled by springs.

exact, whereas the strip spring represents only a reduced average compliance of
the entire structure. Depending upon the modulus of the springs, the approach
may cover all the cases: from the unrestrained supports to the purely rigid-plastic
post-yield behaviour.

Following the rigid-plastic model of the post-yield approach, the instantaneous
collapse mode of the structure consists of rigid-body rotations around the sup-
ports (Fig. 2) and, therefore, plastic deformations appear only at the central and
support plastic hinges. Kinematical compatibility of the plastic flow of the de-
formed structure needs the instantaneous relative rotation axes in all the hinges
lying in one horizontal plane. Position of this plane, together with a relation for
the elastic shortening rate of the strip, determine positions of neutral axes for
the generalized plastic strain rates; following the plastic flow law, they coincide
with neutral axes for normal stresses. Equilibrium of the stresses gives a linear
differential equation for the axial force N with respect to the central deflection
w. Its solution, together with unstressed initial conditions (w = 0, N = 0), de-
scribes the evolution of the non-dimensional force n = N/Nj as a function of the
current non-dimensional central deflection o = w/h:

1
(1) n=(1-e"%) (k+g)—a.
The reduced elastic compliance ratio ¢ is:

8Eh?
(2) €= o.L?

and k describes plastic characteristics of the cross-section. For a tensionless singly
reinforced and for a doubly reinforced symmetrical cross-sections, respectively,
k is expressed as follows:

(3) k=1-m—n, k=1

with 7y, 7; representing intensities of the bottom (central hinge) and top (sup-

port) reinforcement, respectively:
Ao,
(4) n=

" ho.




ARCHING ACTION REVISITED 77

The plastic moduli of the cross-section are:

o.h? och

(5) Moy = g

When the value of the axial force (1) is introduced to the equation of the limit
equilibrium of the structure, one obtains the relation for the load-deflection curve
looked for,

(6) q=%=qy+(k—a)2—[k-(l—e‘”)(k+§)]2

The non-dimensional collapse load g, corresponds to simple bending with
free horizontal displacements, i.e. in absence of the axial forces. The curves (6)
for different compliance ratios ¢ are given in Fig.3. The case ¢ = 0 represents
the purely flexural response, and ¢ —o the rigid-plastic model. For an advanced
deformation process a pure membrane response appears, corresponding to the
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Fi1a. 3. Approximate load-deflection analytical curves (6) for the strips with different
compliance ratios.
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straight part of the plot. The membrane response is, of course, independent of the
elastic characteristics of the structure. A small intermediate phase is neglected
for the sake of simplicity.

The above results are directly applicable also to other symmetric loading cases
of the clamped strip.

It is obvious that the ratio ¢ is only a conventional representation of the
average longitudinal compliance of the strip. In reality this compliance depends
upon the moment-to-force ratio M/N and, therefore, is variable along the strip
axis. It was proposed in [13], following some observations concerning test results,
to determine the value of ¢ by using a reduced Hooke modulus F equal to one
half of the nominal modulus of the material at compression.

Since the results, and especially the peak-load value depend very strongly
upon the choice of the compliance ratio, its values should be assumed on the
basis of a more exact analysis.

3. FEM INCREMENTAL ANALYSIS

The incremental FEM analysis was conducted using the ABAQUS program
[14]. Calculations were performed on the CRAY CS-6400 belonging to the Com-
puter Center of the Warsaw University of Technology.

To allow for a quantitative comparison of the results of the FEM analysis with
the results of the discussed above approximate approach [13], the same constitu-
tive material model is adopted in both cases. This concerns the elastic-perfectly
plastic tensionless material of the strip core and perfectly thin elastic-plastic rein-
forcement layers uniaxially stressed. Tangential stresses being disregarded, as in
the classical Bernoulli beam theory, the core material is considered to yield under
uniaxial stress. Therefore, the associated plastic flow rule implies the coincidence
of the sign of axial stresses with that of the plastic strain rate. This remark is
important, because in the post-yield approach applied to concrete structures
the coincidence concerns the signs of stresses and strains (a deformation-type
theory).

The influence of a tensile strength of the concrete o; neglected in the above
model was evaluated in the case of unreinforced cross-section, where it should be
relatively most significant. The concrete behaviour in compression is, as before,
elastic-perfectly plastic. In tension it is elastic up to the peak tensile strength
oy = 0.090. followed by a linear softening until zero strength at the full crack
opening. To avoid a mesh-sensitivity of such a model, the Hilleborg softening
criterion is adopted, with the full crack opening of 0.05mm smeared along one
element length. This influence is shown in Fig.4; it practically disappears well
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before the phase near the ultimate load, which is of principal practical interest.
Therefore, in the main part of the study the concrete is assumed to be tensionless.
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FiG. 4. Early stage of unreinforced elastic-perfectly plastic strip with and without a limited
tensile strength and ductility of the concrete accounted for; incremental analysis.

The finite elements used are standard plane beam elements B21 from the
Abaqus [14] catalogue. These were 2-node linear elements with uniaxial rein-
forcement layers. Because of the particular character of the tensionless response,
the number of integration points across the thickness had to be remarkably larger
than that normally recommended.

The incremental equilibrium equations were based on the small-strain large-
displacements and large-rotations beam theory. They were integrated, following
a standard Abaqus algorithm, using the Newton method. The procedure was
displacement-controlled and was continued up to the state of advanced tension
membrane response. Nevertheless, the main interest, and the more precise results
concern the early phase of the structure response, in the vicinity of the ultimate
peak load.

Calculations started from a reference case of the clamped strip shown in Fig. 2
with the characteristic data: the strip span L = 300 cm, the cross-section height
h = 30cm, the concrete modulus £ = 30 GPa and its compressive strength
0. = 40 MPa; reinforcement steel: E' = 210 GPa, o; = 250 MPa. Then, the para-
metric study concerned the span-to-height ratio L/h = 7 — 35 and the concrete
modulus-to-strength ratio £ /o, = 250 —2250. Reinforcement intensity was taken
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from 0% up to 1.6% for each reinforcement layer; the layers were supposed to
coincide with external faces of the strip; they were posed either symmetrically
or only at the face undergoing extension.

Results of the incremental analysis confirm that the approximate approach
neglecting flexural elastic-plastic deformation may represent qualitatively cor-
rectly the real response of the elastic-perfectly plastic structures. The approxi-
mate load-deflection curve commences at w = 0 with the load value equal to the
flexural carrying-capacity g, , but the real curve climbs very steeply (at least two
times faster than in pure bending, see Fig. 1b) and attains this load at deflection
less than 1% of the strip thickness. Therefore, the difference of the two curves
is nearly indiscernible in this very early phase. The rise in the instantaneous
collapse load of the deformed structure is due to the increase of the axial force.
However, the maximum load is attained at a deflection less than 10% of the
thickness, well before the axial force attains its maximum. Then, the support-
able load that may maintain the structure in the inertia-free equilibrium must
decrease, but the curve slope is significantly less steep than at its ascending
part. If the load remains unchanged after it attains the maximum, the struc-
ture snaps-through in a dynamic way until the horizontal load-deflection path
meets the ascending branch of the curve. This problem was dealt with using the
approximate approach in [21].

Since the incremental procedure was displacement-controlled, the standard
algorithm dealt easily with the instability zone at the peak-load. Some problems
occur in certain cases at the minimum-point load, especially for the cases of sin-
gle and/or discontinuous reinforcement. In the rigid-plastic model the minimum
of the curve is strictly equal to the purely flexural load-carrying capacity and
corresponds to the zero axial force. Due to elastic deformations, this minimum
load is slightly inferior to the flexural value. For very compliant structures this
difference may be remarkable. At the following ascending branch, the axial force
attains the tensile strength in the weaker of the plastic hinges. Then, a membrane
response is continued, represented by a linear load-deflection relation. Its begin-
ning for symmetrical reinforcement is shown in Fig. 6 a. For single reinforcement
this response is attained at a more advanced deformation.

When a series of structures are considered with various L/h and E/o. ratios
but chosen in such a way that the compliance ¢ (Eq.(2)) remains constant, the
load-deflection curves are practically identical. For unreinforced and symmetri-
cally reinforced structures, the coincidence is so exact that the authors suspect
that the kernels of the solution of the nonlinear differential equation governing
the problem depend exclusively on this parameter. Therefore, the presented cases
differ only in the reinforcement (type and intensity 7) and in the compliance ¢.
The same parameters i and ¢ are the only ones that influence the approximate
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FiG. 5. Unreinforced elastic-plastic tensionless strip: a) incremental FEM analysis;
b) approximate analytical results (6); c) early stage — comparison of the FEM (solid curves)
and analytical (dashed curves) results for different slenderness ratios.

solution. This fact simplifies a quantitative comparison of both the approaches.
The curves are identified in the presented diagrams by the value of the L/h ratio,
whereas the corresponding material reference ratio is always F/o. = 750. The
non-dimensional form of the load in the figures is taken following Eq. (6).

The values of ¢ used in the approximate solution (6) for the comparison with
the FEM results are calculated with the Hooke modulus E equal one half of
the concrete modulus in compression. In the case of unreinforced strips (Figs. 5),
the results following (6) coincide so perfectly with the numerical data that the
difference is discernible only in the detail of the early response (Fig.5c). In the
presence of the reinforcement (Figs.6) the fit would be better if the reduced
modulus was taken slightly larger.

Evolution of the axial force for unreinforced and symmetrically reinforced
strips is given in Fig. 7, following the incremental and the approximate analytical
solutions. Symmetrical reinforcement does not influence results of the analyti-
cal approach, whereas its influence on the FEM results is practically negligible.
Since the approximate approach represents well the axial force evolution, it may
simulate properly the unstable character of the response, this character being
induced by the presence of the compressive force.

Only one curve concerning the case of non-symmetric reinforcement is given
in Fig. 8. It concerns the reinforcement of the same intensity put on all the faces
undergoing extension. The response is qualitatively the same as in the case of
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symmetric reinforcement, following both the incremental and the approximate
analysis. Conclusions concerning the choice of the reduced modulus E in the
approximate approach needed for the best coincidence of its results with the nu-
merical data are the same as those for symmetric reinforcement. The compressed
reinforcement seems to have no influence on this choice. It may be interesting
to observe that the influence of the compressed reinforcement on the ultimate
peak-load is significantly more important than its influence on the purely flexural
strength of the structures.

4. CONCLUSIONS

The incremental FEM analysis (using the ABAQUS code [14]) for longitudi-
nally restrained clamped strips shows that flexural deformations have a negligible
effect on the geometrically nonlinear behaviour of the structure. That concerns,
first of all, the phase near the ultimate peak load, when this nonlinearity is of
essential importance. That is why the approximate approach [13] based on the
post-yield rigid-plastic model but accounting for an elastic longitudinal compli-
ance of the strip (and/or of its supports) may simulate well, at least qualitatively,
the real response of elastic-perfectly plastic tensionless structures.

It appears (maybe that it is obvious, but not for the authors) that, even in
the large-deformation range, the elastic-perfectly plastic response of beams is a
function of only one parameter ¢ (Eq. (2)) representing the elastic compliance of
the structure. The response of the structures with different characteristics (L/h
and E /o, ratios) will be the same if the parameter ¢ remains constant. The same
situation occurs in the approximate analysis.

"To obtain the best coincidence of the approximate results with the results of
the complete incremental analysis, the parameter ¢ used in the former approach
should be calculated using the modulus E equal to one half of the concrete Hooke
modulus in compression E.. For stronger reinforcement, a little better fit will be
obtained if the value of F used is slightly larger, i.e., if:

(8) E = E,(1+85)/2.

The symbol 7 stands for an average intensity (4) of the reinforcement in the
tensile zones of the plastic hinges.

Using the above results, the simple formulae (of the complexity level similar
to the level in the strength of materials) may be proposed accounting for the
arching action, in spite of an unstable character of the response. However, a
more extensive parametric study is needed to obtain reliable results. The same
concerns extrapolation of the above conclusions to two-way RC slabs.
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APPENDIX. APPROXIMATE ELASTIC-PLASTIC POST-YIELD APPROACH [13]

To ensure kinematical admissibility of the instantaneous plastic flow of the
strip deformed following the plastic collapse mode (Fig.2), displacement veloc-
ities have to be determined by the rigid-body rotation rule. Generalized strain
rates in the plastic hinge are equal to displacement rate discontinuities of the ad-
Jjacent rigid bodies. In the case of the rigid-plastic model assumed in the classical
post-yield analysis, the discontinuities are described by the vectors of relative
rotation rates. If elastic longitudinal compressibility of the strip is accounted
for, a longitudinal displacement rate proportional to the rate of the axial force
evolution has to be added. Because of the symmetry of the system, axes of the
rotation vectors lie in one horizontal plane (points O, and O, in Fig.9) at a
distance z from the middle plane at supports.

Abo'sq—
stress in  positive
(midspan) hinge
F1G. 9. A half-span of a clamped reinforced concrete strip; instantaneous plastic flow at finite
deflection w.

stress in negative
(support) hinge

Extension rate of the middle plane A and the curvature rate # in the hinges
are determined by the rotation rate @ around the supports

).\n = @z, Fr, = —@,
;\p = —2@(2— w)+ A, Kp = 2@,

with the subscripts n and p denoting the negative (support) and positive (mid-
span) hinges, respectively. The dot denotes differentiation with respect to a

(A1)

time-like kinematical parameter. The elastic shortening rate of the strip A, is
proportional to variation of the axial force N:

L
(A.2) dAe = zdN.

Dimensionless positions £ of the instantaneous neutral axes for strain rates
and for stresses in the plastic hinges are

2
h;

(A.3) £ =
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and a relation between these positions may be obtained from Egs. (A.1). Using
non-dimensional quantities following Sec. 2, this relation may be written as:

2dn
(A4) §p—§n*2&—g%-

Yield criteria for the cross-section may be expressed, following the stress
diagrams given in Fig.9, in a parametric form:

my = 1— &2+ 4(my + n}), np=14+&—-2(m—n), k>0,
My = =14+ —4(n+n;), no=1-&—-2(m-1n), (<O,

where 7 denotes intensity of a reinforcement layer following Eq. (4), subscripts
b, ¢ concern bottom and top layers, respectively, and 7’ indicates compressed
reinforcement (top in the positive hinge and bottom in the negative one).

In the absence of horizontal external loads, the axial force is constant along
the strip and the condition n,, = n, gives, together with Eqgs.(A.4), (A.5), the
following differential equation

(A.5)

1 dn
A. indad =k —
(A.6) S 7o +n=k-aq,
where the parameter k is
(A.7) k=1—n—mn+m+7.

Solution of Eq.(A.6), gives, together with the initial condition @ = 0, N = 0,
expression for the axial force:

1
(A.8) n=(1— e <k + g) —a
Equation of the limit equilibrium of one half of the strip
P
(A.9) L - mp+my, +4na =0

4 Mo

gives, together with Eqgs.(A.5) and (A.8), expression for a current instantaneous
limit load of the deformed structure. It describes the load-deflection curve of
the quasi-static response, plotting the non-dimensional load ¢ versus the non-
dimensional central deflection a = w/h:

(A.10) q=-§ML-E=qY+(k——a)2—[k—(l—e”‘)(lc—}-é)JZ.

The non-dimensional limit load ¢, for the longitudinally unrestrained structure
(N =0) is equal to:

(A11) @y = 4(ms + 0e) + 2(n0 — 1) + 2(my — 7))2.
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The form given above concerns the case when the compressed reinforcement in
the cross-section is not stronger than reinforcement in the tension zone.

When the axial force attains its maximum admissible value in the weaker
hinge, further process is continued with constant stress resultants. Its results
coincide with the rigid-plastic membrane response. Since our main interest con-
cerns the phase of the ultimate peak-load, only the results for two particular
cases are given here: for a single reinforcement (7, = 7 = 5, 7’ = 0)

(A.12) qg=8n+4n(a-1),
and for a double symmetric reinforcement (g, = n; = 7} = 9} = g):
(A.13) q = 8.

The membrane response may be preceded by an intermediate phase. This
phase may be of non-negligible extent if the elastic compliance in the overall
tension significantly exceeds the compliance of the structure under axial com-
pression (see [13]). This problem will not be discussed here because of the reason
given above.
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formula is should be
o
(A11) 4 +ne) +2(ne — m3)? + 2(mo — m)* | 4(ms + 1) — 2(me — m)* — 2(mo — m)’




