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A NOTE ON THE NUMERICAL MODELLING OF VISCOPLASTIC
DAMAGE

P. KLOSOWSKTI (GDANSK)
R.SCHMIDT and D. WEICHERT (AACHEN)

In this paper, a numerical model of the viscoplastic behaviour of metals including damage
effects is proposed. The Chaboche model of constitutive equations accounting for viscoplasticity
coupled to damage is applied. Three types of uniaxial tests are presented: constant strain rate
tests, creep tests, and cyclic loading tests. Numerical results for rupture under cyclic loading are
compared to experimental results given in [1]. Results of calculations based on pure viscoplastic
material behaviour are compared to those including damage effects. The present investigations
are preliminary to the implementation of the proposed model into more general FEM codes.

1. INTRODUCTION

The numerical modelling of material damage by means of continuum mechan-
ics applied to a one-dimensional structural element is the subject of this paper.
Out of a great number of areas of potential application of the present general
model, the problems of life prediction, assessment of safety and reliability of aero-
nautical structures, piping, pressure vessels, power plants or jet engines can be
mentioned. Usually, before carrying out experiments on real structures, uniaxial
experiments are performed. In the same sense, a more general numerical model
developed by the authors is checked by application to truss elements.

In [2], the description of different models of material damage can be found.
Here we restrict ourselves to the viscoplastic type of damage, which is an ap-
propriate choice for metals at high temperatures in combination with viscoplas-
tic constitutive equations. In the literature of damage analysis, most often the
CHABOCHE (1, 3-6], the Bodner - Partom [7, 8], and the GURSON theories of
damage (9] are applied. More sophisticated damage approaches, taking into ac-
count anisotropy of the material during the deformation process, are presented
in {10, 11]. Instead of scalar damage variables, anisotropic damage models use
vectors and tensors of second or higher order as internal state variables. Only a
few papers with results of uniaxial experiments on viscoplastic specimens were
available to the authors [1, 7, 12, 13]. Some of them include a comparison of
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experimental and numerical results, taking also damage effects into account [1,
7, 12]. The aim of the present paper is to compare the results of numerical simu-
lations to available experimental results and to check the influence of damage on
the viscoplastic behaviour of INCO alloy specimens. Also, the influence of the
temperature is studied for isothermal states.

2. CHARACTERISATION OF THE DAMAGE MODEL

Here, we will deal numerically with the uniaxial problem only. Therefore, in
this chapter we present the uniaxial form of the governing equations, parallel
to the general description. We assume that strains are small enough so that the
additive decomposition of total strain rates into the elastic and inelastic part is
justified. So, the total Green- Lagrange strain rate tensor € can be written in
the form

(2.1) E=ec e, E=ét i

where €° and €' are the elastic and inelastic strain rates, respectively. For isotropic
materials the relation between the rate of the second Piola - Kirchhoff stress
tensor and the elastic part of the strain rate tensor can be expressed by

(2.2) 6=E:¢&, = Eé

Here, E denotes the tensor of elastic moduli, E is Young’s modulus. Using (2.1),
equation (2.2) can be transformed into:

(2.3) 6=E:(¢-¢), o=E(:-¢),

We assume isotropic damage, which means that cracks and cavities appearing
during deformation are distributed uniformly in all directions. In this case the
effect of damage can be expressed by the scalar parameter D € [0,1], which
defines the relation between the apparent stress and the effective stress tensors &

(2.4) 6 =0/(1-D), g=0/(1-D).
The inelastic strain rates are given by:

3. o/-X

(2.5) e =3 To = X))’

&' = p-sign (o — X),

where p is the rate of the equivalent plastic strain, X is the backstress tensor,
(-)" denotes the deviatoric part of the respective tensor, and J stands for the
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second invariant of the argument:

1/2
1@ -X) = (560" X): (0= x))
(2.6) [ %(0 ~X) 0 0o ]
Jo' -X')=J 0 —;;(a—X) 0 o - X].
0 0 —3l0-X)]

In the Chaboche model of viscoplasticity coupled to damage, the rate of the
equivalent plastic strain p is defined by [1, 2J:

= 7<J(cr’—X')/(1K— D) —R—k>n’

¢ = 7<IU_X)/(1 ;‘,D)_R—k>nsign(a—X).

Here k, K, and n, are material parameters to be determined by experiments,
D is the damage parameter, and (z) is the McCauley bracket defined by (z) =
1/2(z + |z|). In the typical Chaboche’s approach the parameter vy = 1.0. The
material parameter K is related to the parameter p given in [1]

(2.8) K =p~t",

(2.7)

The scalar R and the backstress tensor X represent isotropic and kinematic
hardening. Their evolution is defined by

(2.9) R = b(Ry - R)p, R=b(R ~R) léi|,

é_i

Y

. 2 . , .2 .
(2.10) X = gcu-:Z - cXp, X = gaa’ - cX

where b, Ry, a, and ¢ are hardening parameters. If in Eq.(2.7) we assume no
hardening and additionally v # 1.0, the Perzyna type of elasto-viscoplastic con-
stitutive equations can be easily obtained.

According to [1], the damage evolution is assumed in the form:

1)

AT N
(2.12) T 2(1_—‘105575 E_(l +1)0cqn +3(1 - 21/)0?1],

-Y = m E(l + u)azqu]



94 P. KEOSOWSKI, R. SCHMIDT and D. WEICHERT

with
1/2
Oequ = [gal : G'J ’
2.13
e e () ()¢ () ()]
e = 12\373 3 3 37)°\"3° -7
(2.14) OH = %Tr(a), oy = % (ga - %0‘ - %a) =0,

where s and § are material parameters to be determined by experiments.

Equations (2.7), (2.9)-(2.11) have differential form. Including them into a
computer algorithm requires the choice of an appropriate numerical method of
time integration. In the present work the trapezoidal method was used because
_of its simplicity. It is based on the following equations

At
Ax = [f(o't Aty Xi—at, Rioae, Di—ae) + (01, X4, Ry, Dy)]
At

(2.15) 5

k-1
[Xt At +Xt ] ’
X € (eﬁX,R,D) .
For a certain time increment At in the iteration process (with £ denoting the

number of the iteration) one obtains the current values of the integrated functions
by the relations:

et =ef=el_, + A€, Xy = Xk = X;_a + AX,

(2.16)
R, = Rt =Ri_a: + AR, Dy = Df = Dy + AD.

The chosen time increment must be small enough to guarantee the convergence
of the iteration process. According to [14] it must fulfil the condition

(2.17) —At H <1, | vn € (0,X,R, D).

Oyn

The iterations process is carried out until for the inelastic strain rate ¢' the error
is lower than the assumed error range 7
o1k Lik—1
& &
.1k
&4

(2.18) <.

Details of the algorithm of the numerical procedure can be found in [15, 16].
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3. NUMERICAL RESULTS

The numerical simulations were performed for uniaxial loading of truss ele-
ment-shaped INCO alloy specimens (length | = 1.0m, cross-section area
A =0.0001 m?). Material parameters for different temperatures calculated from
formulas given in [1] are given in Table 1.

Table 1.

Temperature 165°C 300° C 450° C 627° C
E GPa 197-10° 189-10° 178-10° 162-10°
v - 0.3 0.3 0.3 0.3
K MPal/? 699 1634 4200 12790

MPa 874 813 708 501
n - 2.4 2.4 2.4 2.4
GPa 80 80 80 80
¢ - 200 200 200 200
R MPa —8.97 —24.81 —61.92 —165.4
b - 15 15 15 15
s - 3.0 3.0 3.0 3.0
S MPa 8.55 7.36 6.04 4.48

Three types of numerical tests were performed: constant strain rate tests,
creep tests and the cyclic loading tests. For each of them the results based on
pure viscoplastic material behaviour are compared to those including viscoplastic
damage effects. In the plots for the constant strain rate and creep tests the critical
damage (D = 0.24) is indicated, which is considered as a limit of the present
theory.

In Fig.1A plots of the stress versus strain obtained for different strain rates
at T' = 627° C are shown. For small strain rates only a small influence of damage
can be observed. Also for higher strain rates the plots obtained on the basis of
constitutive equations with and without damage are nearly identical, but the
critical value of damage is reached. The evolution of the damage parameter
is shown in Fig.1B. The critical damage is first obtained for the strain rate
€ = 0.01s7%; for both higher and lower strain rates the critical value of damage
is reached at larger strains.

Results for the numerical simulation of creep tests for the same type of speci-
mens are presented in Fig.2. In Fig.2 A plots of the strain versus time are given
for different levels of stress. For stresses up to ¢ = 1500 MPa there is no dif-
ference between elasto-viscoplastic and elasto-viscoplastic damage analysis. The
damage effect becomes more important for high stress levels (when the applied
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Fi1a. 1. Constant strain rate tests for INCO specimens at T' = 627° C. A) Stress, B) damage
parameter.

load causes stresses beyond the hardening saturation value). Only in this case
(see Fig.2B) the critical damage value is reached.
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FIG. 2. Creep tests for INCO specimens at T = 627° C. A) Strain, B) damage parameter.

In Fig.3 the numerical results for cyclic tests are compared to experimental
results available in [1]. The tests were carried out for different strain ranges Ac
and different temperatures. Each test was performed with the constant strain
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rate ¢ = 107°1/s. In Fig.3 the number of cycles necessary for rupture of the
specimen is given. Rupture is here assumed to occur if the calculated value of
the damage parameter D is equal to 1.0. A fair correlation of the numerical results
with the experiments can be observed. The authors are aware of the fact that the
calculation of the number of cycles until rupture goes beyond the range of the
present theory. However, since the increase of the damage parameter beyond the
state of critical damage D, is very rapid, especially for wider strain ranges (see
Fig.4), the results can be taken as a first approximation of the real situation.
A typical evolution of the cyclic load test is presented in Fig.5 as a plot of the
stress versus strain. The test was carried out at ' = 627° C and the specimen was
strained in each cycle in the range ¢ = £3%. In Fig. 6 the final stress in each cycle
at ¢ = 3% (i.e. before unloading was started) is plotted versus the number of
cycles. Results for the elasto-viscoplastic damage analysis are compared to results
obtained in the pure elasto-viscoplastic analysis. The decrease of the stress in
the elasto-viscoplastic analysis can be explained by isotropic softening of the
material (see also the hardening parameter R, in Table 1). Different results are
obtained in the elasto-viscoplastic damage analysis. Here, the softening of the
material is coupled to the effect of damage resulting in a rapid decrease of the
final stress.

4. CONCLUSIONS

The present numerical model of material damage shows a fairly good agree-
ment with the experimental results for cyclic loading until rupture, available in
literature. However, the fundamental question, how general the model is with
respect to different kinds of metals of the considered class, remains open. Also,
for the time being, the restricted number of exclusively uniaxial numerical tests
seems to be insufficient to draw general conclusions as to the exactness of the
model for more general loading situations. Nevertheless, the obtained results en-
courage the authors to continue the outlined research on a broader experimental
data basis with the perspective of an implementation of the proposed model in
a more general FEM code.
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