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ON INTERACTION BETWEEN MODE III CRACK AND A NONIDEAL
BIMATERIAL INTERFACE

G.S. MISHURIS (RZESZOW)

Behaviour of a stress field in a neighbourhood of a crack tip placed near a nonideal interface
is investigated. Along the interface tractions are continuous, but displacements are assumed to
be discontinuous, and proportional to the tractions. Coefficient of proportionality depends on
a geometrical form of the interfacial zone.

INTRODUCTION

Local effects around a crack tip and the nearest bimaterial interface play an
important role in fracture mechanics of composites [3, 5]. Because structures
of modern composites are very complicated, we cannot directly solve the corre-
sponding boundary value problems. For this purpose, the Finite Element Method
may be applied. In such an approach, special elements should be used, and sizes
of regions in which these elements are taken into account should be estimated.
Theoretical works by Zak, Williams, Cherepanov, Sih, Rice, Erdogan, Comninou,
Atkinson, Hutchinson and many others have made it possible to establish the
main regularities of the interaction between a crack tip and a bimaterial inter-
face. However, such interface has usually been considered as an “ideal” contact,
when the vectors of the displacements and tractions were continuous across the
interface. The objective of this work is to discuss local stress and strain states,
accounting for mechanical features of “nonideal” contact. Two different situa-
tions are separately investigated. In the first part of the paper we assume that
the crack tip terminates at the nonideal interface, but in the second one, the
crack tip is situated at some distance from the interface.

1. STRESS SINGULARITY NEAR CRACK TIP TERMINATING AT THE INTERFACE

We shall investigate such a mathematical model that, firstly, must be as
simple as possible to solve the arising boundary value problems, and, secondly,
must preserve the main regularities of the mechanical feature of the interface.



104 G.S. MISHURIS

Namely, we consider the Mode III (antiplane) problem for a semi-infinite crack,
terminating normally at the interface of a bimaterial plane. We assume that
there is a thin adhesive elastic zone between the materials (of the shear moduli
to and py). Thickness of the interfacial zone satisfies the relation h(r) = Ar®,
where r is the distance from the crack tip to an arbitrary point on the interface.
Further on we propose that QY -axis coincides with the crack line ahead, but the
origin of the coordinate is at the crack tip. Considering such interlayers as thin
elastic shells, we can find interactive conditions along the interface:

(1) [UOz]|9=0 =0, ([u] = Tra092)|e=o =0.

For this purpose, we integrate a respective balance equation in a curvilinear
coordinate with respect to a parameter determining the direction which is per-
pendicular to the shell boundaries. Here parameter 7 is calculated as follows:
T = A/pint € 1, where py; is the shear modulus of the elastic interlayer. Because
the geometry of the problem does not contain two parameters with dimension
of length, we normalize all distances by the characteristic length where tractions
act along the crack surfaces.

Such an approach makes it possible to investigate different geometry of the
intermediate zone depending on the values of the parameters 7 and a. So,if T =0
we have the usual ideal contact conditions. When 7 > 0, nonideal contact arises.
Namely, if @ = 0 then there is a thin layer between the materials. The situation
when 0 < & < 1 can be interpreted as a thin adhesive zone with damage near the
crack tip. For a = 1, the intermediate zone is constructed by two thin wedges.
Finally, 1 < a can represent an “almost ideal” contact between the materials.

1.1. Problem formulation

We will find the harmonic function u = u, satisfying the intermediate condi-
tions (1) across the interface. Along the crack surfaces the traction is prescribed:

(2) 002|9=_,r/2 = ﬁg(r)»
but on the crack line ahead one can conclude due to symmetry that
(3) u|9=w/2 =0.

Finally, we should assume additional conditions in the singular points (r—0,
r — 00) of the domain under consideration.

@ o= {50, 1% = {30 12

Here 99,900 > 0, (9o + Y0o) > 0, 70, 7e0 > 0 are some unknown constants which
depend on the values of g, y1, T, @ and will be calculated by solving the problem.
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1.2. Reduction of the problem to a functional equation

Applying the Mellin transform technique we obtain the following functional
equation

(%) poTGo(s + a — 1) + F(s)Fo(s) = G(s),

against the function
[e e}

(6) ao(s) = /0,92,(7',0)|9=07‘s dr,
0

which is analytic in view of (4) in the strip ~7o < Re s < Y- Here we introduce
the notations:

2(k — coss) 9(s)

F(s) = (1—k)ssinms’ (s) = ssin(rs/2)’

~ Ho — M1
§) = r)rédr, K= —"=,
0 O/gm o

Besides, to ensure the balance of the domain —7/2 < 6 < 0 we should assume
that

(7) 0(0) = —3(0).

In the case of ideal contact (7 = 0), Eq. (5) is directly solved in a closed form,
of course. This solution is well known (see for example [3]). Particularly, one can
conclude that ¥ = dop = 70 = Yoo = w, where w € (0,1) is the first zero of the
function F(s) which is nearest to the imaginary axis.

Equation (5) is also immediately solved in the case of nonideal contact across
the thin wedges (o = 1) for an arbitrary value of 7. Then, ¥y = Jo, = Y0 = Yoo =
w(7), where w,(7) is the mentioned first zero of the function F.(s) = pot+F(s).
The corresponding graph is presented in Fig. 1. Let us note that the normalized
parameter 79 = Tpg is not small, in general. This fact is in a contradiction to
the situation where parameter 7 < 1. Besides, the additional condition (7) holds
automatically true for these two cases.

In the general case of the nonideal contact (7 > 0, & # 1), Eq. (5) is reduced
to a special singular integral equation on a half-axis with fixed point singular-
ities. Such equations have been investigated in [8]. We shall not present here
the procedure of reduction of that equation, or analyse the obtained singular
equation (for this purpose see Appendices in [9, 10]).
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F1G. 1. Graph of the parameter w.(7) determining the exponent of stress singularity
Yo — 1 = wa(70) — 1 for the case a = 1.

1.3. Asymptotics of the solution near singular points

Let us remember that in the case of the ideal contact conditions, a solution
near zero and infinity points can be estimated as follows:

U('I‘,O) = O(Tw)7 UT(@)Z(Tao) = O(Tw_1)7 r—0,

(8) u(r,0) = O(r~%), or(9)2(7,8) = O(r~1-v), T — 00.

Accurate relations are presented in [3]. What is important to note is that there
are no other singular terms in these asymptotic relations.

For the nonideal contact, the situation changes depending on the values of
the parameters a, 7. Namely, when the adhesive zone is a thin layer (a = 0,
7 > 0), asymptotic expansion of solution of the problem is of the form

u©(r,0) = Co - g—qr sinf + O(r'*¥), r—0,
0

_ Copor
TH1To
(9)  al.(8) = g (O +0(r*), =0,
asg)z(r, 6) = gig)w) + gifg)(())ln r4+0(rY), r—0,
u(j)(r, 6) = O(r™*), ai{g)z(r, ) = O(r“l""), r — 00,

uD(r,0) = [(t—268)sin 842(Cy+1n7) cos 8]+ O(r™*), r—0,

where Cy, C; are some constants, and superscript j (§ = 0,1) indicates in which
materials (with the shear moduli po or uy, respectively) the relations are true.



ON INTERACTION BETWEEN MODE III CRACK 107

These formulae can be obtained from [9] by taking into account the symmetry
of the problem under consideration. Moreover, forms of the functions gf{g) are
easily found from strain-stress relations.

For all remaining cases (7 > 0, @ > 0), the corresponding relations can be

rewritten like this:

u(o)(r, 0) = Co-l'“k?y rctg (yom/2) cosyo(ﬂ/2+0)+0(r“’3), r—0,
070

2y sinyo(m/2 ~ 6) + O(r™), r—0,
170

(10)  03y.(n0) = k™' (6,90) + 0571, 7 o,
WO(r,0) = Coo + 0(r™),  uM(r,8) = O(r), 7 - o0,

ohye(r,8) = O(r717), 1 = oo,

uW(r,0) =

Here, the constant k3 in the principal term of stress asymptotics is the
so-called “Generalized Stress Intensity Factor”, which coincides with SIF when
Yo = 0.5. Taking into account this fact, further on we shall call it SIF. Let us
here note that situations can arise that several singular terms (75 < 1) of stress
asymptotics appear near the crack tip, what is in contradiction to the case of
the ideal interface.

These relations have been derived in [10]. Let us discuss the results obtained
in [10] for exponents of the singular terms of stress field near the crack tip:

e For a = 0, stress concentration appears only in front of the crack tip for any
values of the mechanical parameters pg, 11, 7, and it has a logarithmic character.
Passing to the displacement field, there is a displacement discontinuity along the
bimaterial interfacial contact near the crack tip (Co # 0), and other parameters
in Eq.(4) are 99 = 0, ¥, = w.

e If o € (0,0.5], only one singular term in asymptotic expansion of stress
in the neighbourhood of the crack tip appears. The corresponding exponent is
70— 1= —a€(-1,0), and it is independent of yg, yy, 7.

o For the case a € (0.5,1), or more precisely o € (an,0n41), (n = 2,3,..),
where a;; = 1~ 1/n, there are exactly n singular terms in the asymptotics with
the exponents o — 1 = —a, v —1=0G+1)(1-0a)-1€(~1,0),5=1,...,n.
Constants in these terms can be calculated from some recurrent relations (see
(10]). In the last two cases (& € (0,1)), the displacement discontinuity along
the bimaterial interface near the crack tip also appears (Cp # 0), and 9y = 0,
Foo = w.

e If o = 1, there is one singular term of stress asymptotics with the exponent
w« =1 € (=1,w — 1), depending essentially on the values of the mechanical
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parameters o, p1, T (see Fig.1). For example, when 7 — 0 we have w, — 1 —
w — 1. This coincides with the result for the ideal contact. In this case (a = 1)
and the next one (a > 1), the displacement field is continuous near the crack tip
(Co = 0). However, it is discontinuous at any distance from the crack tip along
the bimaterial contact in view of the conditions (1). Besides, 9y = 7o.

e For the case o € (1,2 — w), or more precisely a € (a:_l_l,a;t), (n=2,..),
where aif = 14 (1 — w)/(n — 1), there are exactly n singular terms in the
asymptotic expansion of stresses with the exponents 75 — 1 = w — 1, ’y;' -1=
—jla-1)+w-1€(-1,0),5=1,...,n.

e Finally, in the case a € [2 — w,), one singular term in the asymptotic
expression for stress appears. The corresponding exponent is of the form yo—1 =
w — 1, and does not depend on the remaining parameters. Thus, the formula of
the solution is of the same form as for the ideal interface (8).

What is interesting to note is that there are two cases (where o = 1/2 and
#1/po = 1;0r @ = 14 w) when the corresponding constants ks in the main terms
of expressions (10) can be calculated in a closed form.

Passing to the behaviour of the solution in the neighbourhood of the infinite
point (7 — 00), we only note that

0<ax<l: Co#0, Cxu =0, YVo=1-0a Yo=uw,
a=1: Co=0, Cou =0, 7(m0) = 70(70) = wi(70),
l<a< oo: Co =0, Cx#0, Yo=w—-1, Jo=a-—1.

1.4. Numerical results and discussion

Now we present some numerical results concerning the stress intensity factors
for loading in (2) g(r) = §(r — 1) (the Dirac delta-function concentrated at the
unit distance from the crack tip on the crack surface), and for different values
of the remaining mechanical parameters of the problem: u; /ug, o, 7o. Here it is
more convenient for us to use a dimensionless parameter 7o = T instead of 7.
Further on, we shall separately consider two cases a € (0,0.5] and a € [2, 00),
since they have their specific features (there is always only one singular term in
the asymptotic expansion of stress field near the crack tip).

First of all, we investigate the influence of the normalized parameter 75 = 74
on the coefficients in (10).

Thus, in the case of & = 0.1 in Fig.2 graphs of the stress intensity factor ks
(Fig.2a) and the normalized jump of displacement near crack tip Coug (Fig.2b)
(see (10)) are presented in a logarithmic scale, as functions of 7o for different
values of the ratio y;/po. As it can be easily seen, the corresponding curves are
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F1G. 2. Graphs of the generalized SIF k3 and displacement discontinuity near the crack tip
Copo for different values of 70 = por.

straight lines for all values of parameter 7y under consideration. Consequently,
we can conclude that

(11) CONT(‘,"+", k3~7‘5’+a“1.

Here the value of the exponent calculated numerically is equal to w + a with an
accuracy to 2%, which could be expected. Hence, if 79 — 0, then the asymptotics
(10) is “rebuilt” to that for the ideal bimaterial contact (79 = 0). Moreover, the
relations in (11) make it possible to calculate the constants Coug, ks in (10) for
all values of 7y using the information concerning only one small value of 7g.

In Fig. 3, graphs of the stress intensity factor k3 (Fig. 3 a) and the ratio k/yo =
k/w. (Fig.3b) are presented in a logarithmic scale as functions of 7y for @ = 1.0
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and different values of the ratio u;/pg. One can easily see that if 7o = rug — 0,
then all constants approach those for the ideal contact conditions: k3 — kid,

Yo = Wi — W,

k3 a=1.0
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F1G. 3. Graphs of SIF k3 and the ratio k3/w, in the case a = 1 for different values of .

Let us note that coefficient k3/vo should be used in fracture mechanics anal-
ysis instead of the parameter k3 when the order of the stress singularity is not
equal to —0.5. Actually, if we will consequently apply any of the critical tip open-
ing fracture criteria [4, 6, 14], or the effective stress fracture criterion proposed
by Novozuyrov [11], which can be schematically written (without determining

G.S. MISHURIS

the stress-strain state) like this:

Au(d, ) < v.,

=

d
/0(7‘,0)dr<0*, =
0

kdo

Yo
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then the term k3d™ /7o should be investigated. Here d is some additional pa-
rameter of the dimension of length which has a different sense for each fracture
criterion. Note that the criterion [11] has been generalized by MROz, SEWERYN
(12, 13] for different fracture and failure processes.

Let us illustrate the fact that the value of the stress intensity factor can not
completely determine the fracture process. Namely, from Fig.1 and Fig.3a, it
follows that w, — 0, ks — 0, when py/po — 0. It means that the generalized
SIF k3 tends to zero when the crack terminates at very soft material, and, conse-
quently, one could conclude that the crack should not propagate. However, such
the result is evidently false. Note in this connection that the exponent of stress
singularity w, — 1 tends to —1 at this time! On the other hand, from Fig.3b we
can find that the value of k3/w. does not tend to zero, and k3/w. — 0.5 only.

Now we present the numerical results when parameter « is greater than 2 —w.
In this case, the stress singularity exponent does not depend on all remaining
parameters and is equal to w — 1. Hence, we can compare the respective unique
value of k3 from (10) with the coefficient ki corresponding to the ideal contact
condition (19 = 0).

ka/w a=20 ks/kid
p1/ po
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FiG. 4. Influence of the parameter 7o = por on the SIF in the case o = 2.0. Here ki is SIF
for the ideal model.

In Fig. 4, graphs of the parameters k3/w, k3/kil are presented as functions of
parameter 7 for different values of the shear moduli ratio 1 /po and for a = 2.0.
Because all curves in Fig.4 a are straight lines when 75 > 0.05, there is a linear
dependence of k3 on this parameter for such values of 7:

k3 ~ kX + const (u1 /o, )70

Let us note that this approximate relation for k3 is transformed into an equality
for all values of 79 with @ = 1 + w when the value of k3 is calculated in a closed
form.
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The next conclusion that can be drawn is that parameter 7y influences weakly
the stress intensity factor when 79 < 0.1. (The corresponding ratio k3/kid is less
than 1.1) Moreover, as the ratio p;/uo increases, the interval of parameter 7
extends where the stress intensity factor ki is acceptable instead of k3. Never-
theless, outside the mentioned interval of g, the largest departures of k3 from
kX occur for the largest values of u; /0.

Using the results presented above, we can also investigate the influence of
the ratio p1/po on all parameters determining the brittle fracture process. Be-
sides, some additional numerical results for different values of u;/uo and « are
presented in [10].

Passing to the influence of parameter @, we note that the stress singularity
near the crack tip is presented in each of the materials only if @ > 0. But if & = 0,
logarithmic singularity arises only in a half-plane of the shear modulus y;. This
contradiction is eliminated by the fact that function ctgyo(7/246) (o =1—a)
in the formulae (10) for & > 0 tends to zero as @ — 0.

It seems to be natural to expect that k3 will approach ki as o — co. How-
ever, this is not true in our case. This sudden paradox can be easily explained.
Namely, in the model under consideration, it has been assumed that condition
(1) is satisfied along the whole bimaterial contact. However, when r — oo and
a > 1, the relative thickness of the intermediate zone is not small, which is in
contradiction to the necessary assumption of the thin shell approach. As a re-
sult, the displacement does not vanish at infinity in our modelling problem (see
the value of Co, in (10)). To eliminate such an inconsistency, it is necessary to
correct the interfacial condition (1); in the following way:

0<r<a,
a<r<oo,

[v] = f(r,7, )0, f(r,m,a) = {77:7.04,

where a is some parameter. We shall not investigate the corresponding boundary
value problem in the paper. Nevertheless, the asymptotic behaviour of stresses
near the crack tip will coincide with that obtained above in (10).

For parameter a € (0.5,2), the coefficient k3 of the first asymptotic term
cannot be used in fracture mechanics analysis only. The coefficients in the next
singular terms should also be taken into account:

We can investigate the more general interfacial zone which is represented by
two thin wedges connected with arbitrary interlayers considered above. Then
the respective interfacial conditions are of the form: [u] = (r7 4+ 77%)0, [0] = 0,
instead of the relation (1), and the corresponding functional equation will be
written as follows:

pom100(s + o — 1) + F;(s)do(s) = G(s).
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Consequently, in this case we can obtain similar results as before with new pa-
rameters: @ = w,(ro) instead of w, and @, = w,((T + 71)uo) instead of wi(70).

2. CRACK APPROACHING THE NONIDEAL INTERFACE

Now we investigate the Mode III problem for a semi-infinite crack approaching
the layer from an infinite matrix. The crack is normal to the interface and the
distance between the crack tip and the layer is h;. The matrix is homogeneous
and isotropic, but the layer is homogeneous and anisotropic with the main axes
paralle] and perpendicular to its boundaries. The corresponding elasticity moduli
are fiz, ply. The thickness of the layer is equal to hs. Interfacial conditions are
assumed to be nonideal with the parameters a = 0, 7 > 0, e.g. [u,] = TOyz,
[y2] = 0. Such situation corresponds to a thin adhesive intermediate layer that
seems to be a natural occurrence. Finally, on the crack surfaces tractions are
prescribed.

From the author’s point of view, such a model is appropriate to investigate the
main features of the interaction between the crack tip and two nearest nonideal
interfaces of a composite.

Further on we will use the following normalized parameters: h, = hy /ha,

Te = Tpo/h2, pe = wi/po, = VBzly, @ = V,Ux//‘y-

The method of solution of a similar problem is developed in [8]. The Fourier
and the Mellin transforms are applied to respective (layered and wedged) parts of
the domain, and are fitted together along the common (interfacial) boundaries.
Finally, the problem is reduced to a singular integral equation with fixed point
singularities. We do not present here the accurate form of the equation (it has
been derived in [7]), but show some numerical results only.

2.1. Numerical results

The stress singularity near the crack tip is always equal to 0.5. Hence, we
can investigate only the value of SIF. As ATKINSON has proved in [1, 2], the
asymptotic formula for SIF is of the form:

. D 1
when the crack tip is at a small distance A from the free boundary, or
(13) K = ER?~ + O(h'/*=*2),  h -0,

when the crack tip is at a small distance h from the ideal interface. Here, w, is
the second zero of the function F(s) defined in (6), and D, E are some constants.
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Let us compare the values of SIF obtained numerically by solving the men-
tioned singular integral equation, with those given by Egs.(12) and (13).

In Fig. 5, the graphs of a normalized SIF k3(h.) = k3(h«)/k3(o0) are presented
in a logarithmic scale as functions of the normalized distance h, between the
crack tip and the nearest interface of the isotropic layer (a; = 1 & p; = py), for
different values of parameter 7,.

k3 (ha) k3 (ha)
100

100 N, A
N AN

~a_

G g

O‘I ,,e"'@‘—‘ Hx = 100 01 L&E_E_g,g Uy = 100
- gu=€7" ,g"@/@— g =TT
0.01
Pl 107 107 10° ha 10° 107 10°2 10° hu

FiG. 5. Influence of normalized distance hx = h1/h2 between the crack tip and the nearest
interface on normalized SIF k3 (h«) = k3a(h4)/ka(oc0), for different values of the ratio
px = p1/po, and the interaction parameter 74 = po7/ha:
ac-a—1.0,n--n—0.1, e——e—10"2, g——g — 1073, 0—wo — 107*, 6——0 — 0.0.

Here k3(oo) is SIF for the semi-infinite crack in the homogeneous infinite
plane under similar loading. In Fig.5a the layer is “soft” (p. = p/po = 0.1);
in Figs.5c and 5d the layer is “stiff” (. = 10.0); but in Fig. 5b the shear moduli
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of the layer and the matrix are similar (#« = 1.0). Besides, in Figs.5a, 5b and
5c¢ the loading g.(r) = e™" is prescribed, but in Fig.5d, g.(r) = re™".

As one can see, for different values of the ratio #1/po the graphs for the
ideal interfacial conditions (7. = 0) have linear portions for small values of h,
corresponding to the formula (13).

All curves for the nonideal contact have three specific portions. Firstly, the
crack does not “feel” the bimaterial interface (horizontal lines). Secondly, the
crack accepts the bimaterial as the ideal one. The curves for ideal and nonideal
contacts coincide. The corresponding portions depend essentially on the values
of the interacting parameter 7,. And, finally, when h, is less than a certain value
of hu(7.), the crack “feels” the bimaterial interface as a free boundary. In this
case, all curves are parallel, because the term In |In7| is smaller than the term
InD ~0.5In7 (see (12)) when 10~¢ < r < 10~2.

Further we investigate the influence of the distance between the crack tip and

the nearest bimaterial interface h, on the distribution of the traction along the
interface. “
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Fic. 6. Tractions along both interfaces for different normalized distance ha = hy/hs:
1-1.0, 2-107", 8-10"2, 4-1073.

In Fig.6, the graphs of tractions 0y. along the nonideal boundaries of the
layer are presented. Here the figures of the usua) size correspond to the nearest
nonideal interface, an the smaller ones correspond to the next layer boundary.
As before, the layer is assumed to be isotropic. Two different values of the ratio
p1/po = 10.0, 0.1 are considered in Fig.6a and Fig.6b, respectively. Finally,
the loading g. = ™" is prescribed along the crack surfaces, and the value of the
parameter 7, is 7, = 0.1. Let us note that, even though there is a significant
stress concentration for small values of the distance h., the traction is equal to
zero on the crack line ahead.
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In Fig.7, the graphs of tractions o,, along the nonideal boundaries of the
layer are presented as functions of parameter 7, for fixed distance h. = 0.01
between the crack tip and the nearest interface. As before, the smaller figures
correspond to the next layer boundary. The layer is assumed to be isotropic.
Two different values of ratio py/po = 10.0, 0.1 are considered in Fig.7a and
Fig.7b, respectively; and the loading g. = e™" is prescribed along the crack
surfaces. What is important to note is that the tractions along the next nonideal
contact are practically independent of the values of the parameter 7,. As it could
be expected, the greatest concentrations of stresses correspond to the smallest
values of the parameter 7.
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Now we investigate the influence of parameter 7. on the normalized values
of the displacement discontinuity [u.] = po[u;]}/he along the nonideal interfaces.
The corresponding graphs are represented in Fig.7c, 7d, where all parameters
are similar to those in Fig.7a, 7b. As one can see, the greatest values of param-
eter T, correspond to the greatest values of the displacement discontinuity. This
fact may explain the growth of an interfacial crack along the nonideal interface
for such values of parameter ..

Basing on these and some additional numerical results presented in [7, 9, 10],
the following main conclusions can be drawn.

3. CONCLUSIONS

When the FEM is used, the following circumstances should be taken into
account to construct the necessary special elements and to determine the zones
where such elements could be applied.

e Stress singularity near the crack tip terminating at the nonideal bimaterial
interface ([¢] = 0, [u] = 77%0) depends qualitatively on parameter a, and is
equal to the value w — 1 corresponding to the ideal contact only if o > 1.

¢ In general, the number of singular terms of asymptotic expansion of stress
near the crack tip increases when a € (0.5,1 4+ w), and tends to infinity as
a — 1. This fact is an additional argument that not only the main term of
stress asymptotic expansion but all nonvanishing terms should also be taken
into account in fracture mechanics analysis.

o If @ = 0, logarithmic stress singularity appears in front of the crack tip.

e When 79 = 7o < 1 (in most cases even if 7o < 0.1), asymptotic solution is
rebuilt to the solution corresponding to the ideal contact at the distance r ~ 1
for an arbitrary value of a.

e Crack interacts with the nonideal contact (o = 0) at the distances between
the crack tip and the nearest bimaterial interface greater than a certain value
h(7s), (t« = Tpo/hz) as it interacts with the ideal contact. But, already for
distances h. < h(7y), the crack “feels” the nonideal interface as a free bound-
ary. This could explain the hunting crack phenomenon, and the corresponding
initiation of an interfacial crack.

o The greatest influence of the interaction parameter 7, appears when the
shear modulus of the matrix is less than the mean value of modulus p; = | /fizfiy
of the anisotropic layer (when the layer is rigid).

e Tractions on the opposite side of the layer (along the next nonideal interface)
are practically independent of 7,. Hence, the parameter 7, can be taken into
account for the nearest nonideal interface only.
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¢ Anisotropy of the layer influences essentially the results when the layer is
rigid (7 > 10u0).

¢ Distribution of the tractions along the crack surfaces leading to the same
resultant force has the greatest influence on the SIF when the contact is ideal.

10.

11.

12.

13.

14.
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