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NONLINEAR DISCRETE-CONTINUOUS MODELS IN DYNAMIC
INVESTIGATIONS OF PLANE TRUSS MEMBERS

A. PIELORZ (WARSZAWA)

The paper presents dynamic investigations of plane trusses subject to longitudinal deforma-
tions, using nonlinear discrete-continuous models. An external excitation is applied to a rigid
body located in a truss joint. In this joint, a discrete element with a spring having a nonlinear
stiffness is also located. In the considerations the wave method is applied which enables to
determine displacements, strains and velocities in arbitrary cross-sections of the truss members
at an arbitrary time instant. Numerical calculations are performed for two nonlinear models of
the plane truss in steady as well as in transient states.

1. INTRODUCTION

The considerations are concentrated on the dynamic analysis of plane trusses.
Dynamic investigations of members in these trusses are performed by means of
discrete-continuous models consisting of rods of continuously distributed masses,
and of rigid bodies. The discussion concerns the trusses with joints idealized as
hinges without friction. In such cases, truss members are subject only to longitu-
dinal deformations, [1]. The deformation of the truss is assumed to be sufficiently
small, so that the change of the geometry of the truss can be neglected. Rigid
bodies in the discrete-continuous model represent elements in truss joints joining
the truss members. These elements have a rather compact structures, so they
may be treated as rigid bodies. The external force is applied to one of the rigid
bodies and it can be described by an arbitrary function, periodic or nonperiodic.
In the discrete-continuous model, additional discrete elements can be introduced.
These elements consist of a spring and a damper, and they can represent the in-
fluence of additional elements connected with the truss. The spring may have a
linear or nonlinear characteristic.

Linear discrete-continuous models of plane trusses are discussed in [2]. The
aim of the present paper is to generalize results of the paper [2] by introducing
local nonlinearities into the models studied in [2], and to investigate the influence
of these nonlinearities on displacements of rod cross-sections of plane trusses.
The inclusion of such types of nonlinearities is suggested by many engineering
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solutions for plane trusses, [1, 3]. In the discussion the wave method, resulting
from the method of characteristics, is applied, similarly to that used in [2] for
linear cases.

It should be pointed out that trusses have always been subject to intensive
analysis. Particularly, their static investigations have a rich and long-lasting tra-
dition, [1, 3, 4]. Not many papers deal with dynamic investigations of truss mem-
bers, e.g. [5—~7]. They concern mainly impact problems in trusses with weightless
joints, taking into account elastic as well as plastic materials of truss members.
The obtained results are limited to very short time intervals of the order of mi-
croseconds, while in the present paper the nonlinear models of plane trusses with
long-lasting loadings are studied.

2. ASSUMPTIONS, GOVERNING EQUATIONS

Consider the nonlinear discrete-continuous model of a plane truss consisting of
an arbitrary number of truss members connected by rigid bodies, and of discrete
elements, as shown in Fig.1. The cross-sections of the rods are constant, and
they are subject only to longitudinal deformations. It is assumed that at time
instant ¢ = 0, displacements and velocities of cross-sections of the truss members
are equal to zero, and that the system is loaded by an external force P(t). A real
damping in truss members is represented by an equivalent damping applied to
the ends of the members in the model. The i-th member is characterized by the
Young modulus E, density o, length /; and the cross-sectional area A. The j-th
rigid body having mass m; undergoes plane motion.

0, 0i.2 Oiel Xjo2

mj.2

le]

Fic. 1. Nonlinear model of a plane truss.
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In the description of the nonlinear discrete-continuous model, a fixed reference
system Ozy, and one-dimensional coordinate systems 0,z; assigned to individual
i-th truss members are used. The origin of 0;z; system coincides with the location
of one of the ends of the ¢-th member in the undisturbed state at t = 0. Displace-
ment of the cross-section z; in the i-th truss member is described by the function
u;(z;,t) depending on the location of the considered cross-section and on time,
whereas the time functions Uj, V; are the components of the displacements of
the j-th rigid body in the z-axis and y-axis directions, respectively.

Under such assumptions, the equation of motion for the i-th truss member is
the classical wave equation

O?u;(z;,t) 0 0%ui(z4,1)
(2.1) a2 " 927

=0 for 0<2; <,

where a? = E/p.

Equations with the damping continuously distributed should better describe
the motion of truss members. However, no effective methods have been devel-
oped thus far for solving the appropriate equations of motion in the case of
discrete-continuous models. For this reason, damping is described by an equiv-
alent internal and external damping taken into account in the boundary condi-
tions.

In order to find solutions of particular nonlinear cases, we must add to
Eqgs.(2.1) the following initial conditions

(2.2) ui(ari,O) = -

and the appropriate nonlinear boundary conditions satisfied in truss joints. In
analogy to those in [2] for the linear cases, they depend on the number of truss
members in joints. For example, for the j-th joint with n truss members, the
nonlinear boundary conditions may be written in the following general form:

d2U dU; n 0%u; Ju;
Wi + ag;—- 7l + Fy(U;) + kz: (agjk————i)ziat + a4jk5;;> =0,
d*V; dV; n 0%y, ou;
(2.3)  buy—gt +bo =+ Fy(Vi) + Z (bajka o1 T kg ) + P(t) =0,

u; = ui(uy, uz), t=3,4,...,n

where a1; and by; are determined by the mass m;, ag; and by; represent coeffi-
cients of external damping, a3z;r and bsjr represent the internal damping of the
Voigt type in successive truss members, ay;i, bsjr are determined by material
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constants, and the functions Fy; and Fy; represent local nonlinearities in the
model. In [2] Fyy; and Fy; are linear functions.

The components U;, V; of the displacement of the j-th joint in the plane truss
may be described by the displacements of an arbitrary pair of truss members in
the joint. The conditions (2.3) are written for the case when they are determined
by appropriate displacements u;, ug of the first two truss members in the j-th
joint. This assumption does not reduce the generality of the considerations. In
analogy to static displacements, it is shown in [2] that if 2; corresponds to the
displacement u; of the end of the i-th truss member in the j-th joint, then the
functions Uj, V; and the relations needed in boundary conditions (2.3) have the
form

U; = (2k cos a; — 2; cos ay) sin™ (o — a;),
(2.4) Vi = (zisin o) ~ zp sin og) sin ™ (ax — o),

zisin(ag — ) = zpsin(e; — 1) — zsin(e; — ag), 1=2,3,...,n,

where 7 < k and «; is the angle between the i-th truss member and the y-axis,
i = 1,2,...,7n, [2]. The relations (2.4) are derived under the assumptions that
the angles o; remain constant during the motion of the truss and that z; are
orthogonal projections of the displacements of the ends of the ¢-th truss members.
The truss members undergo small deformations and small displacements, so the
above assumptions are justified, [2].

Taking into account initial conditions (2.2), one could assume the solution of
Egs.(2.1) in the form

(25)  wizi,t) = fila(t = t5:) — @i + z4i) + gila(t — tgi) + wi — 24:),

where the functions f;, g; represent disturbances caused by the external force P(t)
in the i-th truss member in the directions consistent with and opposite to the
direction of the z-axis, respectively. Constants ty;, 4i, Tf;, T4; in the arguments
of these functions denote the time instant and the location of the end of the :-th
member in which the first disturbance is observed. These constants may be equal
or differ from each other. The functions f;, g; are continuous functions of a single
variable, and for negative arguments they are identically equal to zero. Their
forms are determined by the boundary conditions of particular problems. Upon
substituting the solution (2.5) into appropriate nonlinear boundary conditions,
nonlinear ordinary differential equations with retarded arguments are obtained
for unknown functions f;, g;.

The approach described above can be used for the consideration of complex
nonlinear discrete-continuous models similar to that shown in Fig. 1. However,
in the present paper, detailed investigations are made for two specific portions
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of the plane truss. It should be pointed out that nonlinear discrete-continuous
models of trusses have not been known in the available literature. Moreover,
simple nonlinear models lead to the solution of a smaller number of nonlinear
equations, and in spite of simplification they can give useful information on the
dynamic behaviour of nonlinear models of plane trusses.

The characteristic of nonlinear springs in the discrete-continuous models is
assumed to be of a hard type. In the paper, the force acting in the spring is
described by the function

(2.6) F(X)=KiX + K3X® with K3>0,

where, according to (2.3) X = U; or X = V;. The nonlinear functions of the
type (2.6) are exploited widely in dynamic investigations of nonlinear discrete
systems, [8].

3. PARTICULAR CASES OF NONLINEAR MODELS OF A PLANE TRUSS

Real trusses usually consist of repeated portions. Below, we discuss two non-
linear models of portions where the influence of adjoining truss portions are taken
into account by means of discrete elements consisting of a spring and a damper.
It is assumed that one of the springs has a nonlinear stiffness. The studied non-
linear models differ from linear models considered in [2] by a nonlinear spring
located in the joint where an external load is applied.

The nonlinear model of a truss portion is shown in Fig.2. It consists of 3
truss members having lengths ly, l2, [3. This model may be treated as a part of

o —

X1

Yy
F1G. 2. Nonlinear discrete-continuous model of the portion of a plane truss.
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the model of the plane truss shown in Fig. 1. In the description of the model we
use a fixed reference system Ozy and one-dimensional coordinate systems 0;z;
assigned to individual members, ¢ = 1,2, 3. The truss members (1), (2) and the
y-axis make angles «, 3, respectively.

In the model, a rigid body m; is located in the joint with coordinates z = 0,
y = lhcosa (z1 = i, 2 = lz). It is loaded by an external force P(t) acting
parallel to the y-axis. The force and the reaction displace the rigid body m, in
the plane zy. For simplicity, it is assumed that the displacement of this rigid
body in the z-axis direction is equal to zero (U; = 0, V4 # 0). The rigid body
my is connected with a nonlinear discrete element, with the nonlinear stiffness of
the spring k12(Vi) = Fyv1(V1)/Vh and with the damping coefficient dy2. The rigid
body m is located in the joint of coordinates z = Iy sin 5,y = 0 (23 = 0, z3 = I3).
It displaces only along the z-axis (U; # 0, Vo = 0). A discrete element with
coefficients ks, dy; representing the effect of additional elements connected with
the truss, is attached to this body. It is assumed that the rigid body ms moving
only along the z-axis (Us # 0, V3 = 0) is located in the joint 2 = —[ysina,y =0
(z1 =0, 2z3 = 0). A discrete element with coefficients k3; and ds; is attached to
the rigid body ms.

As a second nonlinear model of truss portions, we consider a model described
above in the case when the mass mgs is equal to zero and the ends of members
(1) and (3) in the joint z = ~I; sin &, y = 0 are fixed. The suitable model results
from Fig. 2 and for this reason it is not shown in the present paper, see [2].

The models considered in the paper have joints with two truss members. In
such cases the relations (2.4), valid for n-member joints, reduce to

(3.1) U; = (21cos 8 — 23 cosa) sin™ (a + ),
. Vi = (n1sin B + zpsina)sin"H(a+ 8) for a1 =, ay=21-4,

and

(3.2) Uj ==, Vj:(ZQ—zlsinﬂ)cos"lﬂ for a1 =7/2, ay=4.
The above relations are used in formulation of the boundary conditions for the
particular nonlinear models studied in the paper. Moreover, in the analogy to
(2.6) the force acting in the nonlinear spring is assumed in the form

(33) F(‘/l) =KinVi+ I{123V13 with  Kq3 > 0.

Below, solutions for two nonlinear models are presented together with appropri-
ate numerical results.
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4. SOLUTION FOR THE NONLINEAR MODEL I

The first nonlinear model discussed in the paper is that shown in Fig.2. If
one takes into account Egs.(2.1)-(2.6) and (3.1)-(3.3), the determination of
displacements for truss members (1)-(3) of the Model I is reduced to solving
the equations

a2u,'(x5,t) _ 282u,~(:ci,t)
oz ‘T o2

(4.1) =0 for ¢=1,2,3

with initial conditions
(4.2) ui(e:,0) = %%—i(x,',O) =0 for i=1,2,3

and the following nonlinear boundary conditions

32U3 8
—d31—— T

9230t | 95

02u1 + 6u1
aitlat 8:1:1

—ugsinf+u; =0 for 2, =23=0,

2
~ k3juz + AE [Ds 9"us aug]

+AEsina[D1 ] =0 for z;, =23=0,

uycosf —ugcosa=0 for z;=10;, z9=1I,,

0%u, 0 0 i)
—-my [Cz 3; +Cy 3;2} —dys [Cz e + C4 ;2]—K121(C2u1+01u2)
(4.3) — K123(Couy + Cyu)® — AEcosa | D 0w +%
. 123(C2wq 1U2 laxlat 9z,
—~AEcosf |D 0%y 4 du +Pt)=0 for z1=1U, z3=1
23 zat a = 1 — 1, 2 =12,
82u3 6 8 us au;;
~ M2 —dy—— T 2 kyug — AE [D33 8t+6_:c3
. 0? Ouq
— AEsin 8 [D i ug +az2] 0 for 29=0, z3=1I3,
uzsinB+ u; =0 for z,=0, z3=1I3,
where
(4.4) =300 =W g
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Upon the introduction of nondimensional quantities

z; = z;/lo, t = at/ly, ;= uifug, dij = dijlo/(amo),
D; = aDi/ly, R; = m;/me, Ko = Aplo/mo,
P = PI3/(mguoa?), ki = ki;13/(moa?), I; =1;/lo,
K101 = K1nl}/(moa?®),  Kigz = Kp3udlg/(moa®), P =plo/a,

(4.5)

relations (4.1)—-(4.3) take the form

82ui(x;,t) 82u,~(mi,t)

(4.6) 92 - 327 =90 for 1=1,2,3,
8u, .
(4.7) ui(z;,0) = (:1:1,0) for 1=1,2,3,
82?13 (? 82U3 Bug
— R3——— o — d31— ot — ksjuz + Ky [Dga 9 + 6_323
L. 0%y 0wy
+ Kpsin o [Dl 95,01 4 — 92, =0 for z1=23=0,
—ugsinf+u; =0 for z;=123=0,
uycos B —ugcosa =10 for z21=104, x3=1y,
0%u 0%u ou O0u .
- Ry [Cz Bt"’l + Ch BT 2] di2 [Cz 6t1 + Ch a:] Ki91(Coua +Cruz)
, . 0%u ou
(48) - 11123(02?11 + Cﬂtg)g — Kgcosa [Dlal‘—lalt + -871]
0? Ous
— Kgcosf3 [Dga u(;t-l_(') }+P() 0 for z1=10, zo=13,
0%us dus 0%uz  Ous
—d vz
- Rgoeem FYp 27, — kauz — Ko [D38 wr + s
. 0%u 0
—Iiosmﬂ|:D28 8t+<~?gﬂ:0 for 2,=0, z3=1I3,

ussinf+uy =0 for z9=0, z3=1I3,

where overbars are omitted for convenience, and lo, ug, Mg, are fixed values of
the length, displacement and mass, respectively.
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According to (2.5), the solutions of Eqgs. (4.6), taking into account (4.7), are
sought in the form

ui(z1,t) = filt =21+ h) + g1t 4+ 21 = ),
(4.9) uz(x2,t) = fat — @o + la) + ga(t + 22 — l2),

u3(z3,t) = fa(t — i — 23) + ga(t — lo + 23 — I3),
where functions f; and g; represent waves propagating in the i-th truss member
in a direction consistent with and opposite to the z-axis direction, respectively. In
the considered model, the disturbances caused by the external force P(t) arrive
to the member (3) through the member (1) as well as through the member (2).
Thus, according to (2.5), it is taken into account in (4.9) that ty, =l and 25, = 0
while t;, = I3 and zy, = I3.

Substituting (4.9) into the nonlinear boundary conditions (4.8), and denoting

the largest argument of functions appearing in each equality by z, one obtains
the following equations for 6 unknown functions f;, ¢;, 1 = 1,2, 3,

H(z)==gi(z =20+ [fs(z—2l1) + g3(z — 1y — Iz — I3)]sin 3,
fa(2) = —go(z — 203) — [f3(2 = 11 — o — I3) + g3(z — 2l3)]sin B,
gy (2) = P(2) + rag1(2) + r3fi/(2) + rafi(2) + 75.f5(2) + re f3(2)
+rr[fi(2) + ()] + rs [fi(2) + 91 (2)),
(4.10)  g2(2) = = f2(2) + [f1(2) + g1(2)] cos B/ cos e,
7993(2)+71093(2)+71193(2) = r12f5 (2=l +la—13)+r13f3(2—l1+1a—13)
+riafa(z = Iy + Iy — 13) + 71595 (2) + r1693(2),
r17f3(2)+r18f5(2)+r19f3(2) = 12095 (z+ 1l —la—13)+ra1g5( 2+l —la—13)
+ 72293(z + Iy — I3 — 13) + r239{(2) + 72491 (2),

where
r1 = Ry/ cosa+ Ko(Dy cosa + Dy cos? 3/ cos a),
Ty = —dj/ cosa — Ko(cosa + cos® 3/ cos a),
r3 = —Ry/ cosa + Ko(Dj cosa — Dy cos? 3/ cos ),
r4 = —dya/ cosa 4+ Ko(cosa — cos® 3/ cos a),
(4.11) rs = 2KoD3 cos 3, re = 2K¢ cos 3,
r7 = — K191/ cosa, rg = —K193/ cos® a,
rg = Ry + Ko(D3 + Dysin? ), 710 = da1 + Ko(1 + sin? ),

ri1 = ko, r12 = —Ry + Ko(D3 — Dy sin® B),
—da1 + Ko(1 — sin® B), T4 = —ka1,

13
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([11011:]) r5 = —2KoDysin 3, re = —2Kgsin 3,
r17 = Rs + Ko(D;sin asin § + D3),
r18 = d31 + Ko(sin asin § + 1), T19 = k31,
r0 = —R3 + Ko(D3 — Dy sinasin ),
r91 = —d31 + Ko(1 — sin asin ), r9s = —k3,
rog3 = 2KoD; sin a, rog = 2K sin a.

Equations (4.10) consist of one nonlinear equation and five linear equations.
Linear equations are solved by the method of finite differences, and the nonlin-
ear equation for the function g;(2) — by means of the Runge - Kutta method.
Having obtained the functions f;, ¢g; and their derivatives, one can determine the
displacements, strains and velocities in arbitrary cross-sections at an arbitrary
time instant.

The external force P(t) occurring in (4.10) can be described by an arbitrary
function of time. In the paper it is taken in the form

(4.12) P(t) = Pysin(pt)

where p is the loading frequency.

In numerical calculations, the following dimensional quantities are assumed,
2, 3],

lo=li =1l =1l3=2m, A=2.10"3m?, o = 0.8-10*kg/m?3,
E=21-10"N/m? ki =Ky =21-13N/m, m = 20kg,
my = m3 = 3.2kg, mo = 32kg, a = 5000 m/s,
Py, = 200kN, 1o = 1073 m, a=p=mn/6.

(4.13)

Then, nondimensional quantities according to (4.5) are

(4.14) .'Rl = 0.625, _ R, = R3 :_0.1, _ l; = 1.0,
Ky = 1.0, Py = 1.0, k,’j = K191 = 1.05.

The efficiency of the method applied in the paper is demonstrated in [2] for
linear models of plane trusses giving the spatial diagrams of displacements in
truss members and investigating the effect of various parameters describing the
considered models.

For this reason, in numerical calculations we concentrate here on the pre-
sentation of the influence of local nonlinearity on the displacements in selected
cross-sections.
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For parameters (4.14) and damping coefficients d;; = Dy = do = 0.1, dis-
placements of the truss members (1), (2) are equal if z; = 22, and displacements
in the member (3) are antisymmetric with respect to the cross-section z3 = 0.5.

At the beginning, the diagrams of displacements in cross-sections 1 = z3 = 0,
0.5, 1 of members (1), (2) for p = 1.37 and K123 = 0, 0.0125 in the steady state
(t > 970) are plotted in Fig.3. The frequency of the external force p = 1.37
corresponds to the first resonant frequency for the linear case. For the assumed
parameters, amplitudes of displacements in members (1) and (2) increase with

the increase of 2y, 5. Similar diagrams can be drawn for suitable displacements
of cross-sections of member (3).

K123=0
6.00 — = = = = K,53=0.0125
|l
- I
2.00 I ! H
it iy
— ' ] l \
.- A
/ N\ -
. ] \ | ‘l =
' Nl i
-2.00 — u N !
) " N \
) ]
i A V .‘(
-4.00 — \} {
-6.00 T I T I T ] t

870 980 990 1000
F1G. 3. Displacements of cross-sections 1 = z2 = 0, 0.5, 1 of members (1), (2) in the
nonlinear Model I for p = 1.37 and K23 = 0, 0.0125 in the steady state.

Below, the effect of local nonlinearity is studied on the example of amplitude-
frequency curves. In order to determine the suitable amplitude-frequency curves,
equations (4.10) are solved from z = 0 until the steady state for the displace-
ments expressed by (4.9) is reached or for the dynamic force (V1) described by
(3.3), with zero initial conditions for the functions f;, ¢; and their derivatives.
Then, for every frequency p of the external force P(t) there exists a value pg for
which displacement amplitudes jump from the upper to lower curves. However,
equations with a retarded argument (4.10) can be also solved with nonzero ini-
tial conditions. Nonzero values of the functions f;(z), ¢g;(2) and their derivatives
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should be known in the interval < —L,0 >, where L is equal to the maximum
shift in arguments of all functions appearing in (4.10), because (4.10) are equa-
tions with a retarded argument. If equations (4.10) with p > po are solved up to
2, = 2rm/(po+ nAp),n = 1,2,...and m is a fixed integer, and next the values
of the functions f;(2), ¢i(z) and their derivatives from the interval <z, — L, z,, >
are assumed to be initial values of these functions in the interval < —L,0> for
p = po + (n + 1)Ap, then the amplitudes of the sought quantities with these
initial conditions lie at the extension of the upper amplitude-frequency curves
up to the next jump.

From Fig. 3 it follows that the effect of local nonlinearity can be investigated
for an arbitrary cross-section of the considered truss members. In order to avoid
too many diagrams, we concentrate on the study of this effect on displacements
Vi of the rigid body m; located in the joint 2 = 0,y = |, cosa (z = I3, 22 = l3).
The displacement V; is expressed by (3.1); with 23 = u1(l1,1), 22 = ua(l2, 1),
o = o, ag =21 — (.

The effect of the assumed nonlinearity is represented by the parameter K,3
standing at the nonlinear term in (3.3) and by the change of damping coefficient
do and the change of the amplitude P, of the external force (4.12). For this
reason, in numerical calculations the effect of these parameters is studied.

In Fig.4 are plotted the amplitude-frequency curves for displacements V; of
the rigid body m; for the linear case as well as for the nonlinear model with

800 — A
0.0125
6.00 — /,
[t
1
I
1
1
- i
]
1
1)
t
400 —
2.00 —
p
0.00 T T T T | T T }
0.00 1.00 2.00 3.00 4.00

Fi1G. 4. Amplitude-frequency curves for displacements V; of the rigid body m; in the
nonlinear Model I for K23 = 0, 0.0125, 0.05, 0.1, 0.15.
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K123 = 0.0125, 0.05, 0.1, 0.15 in the first two resonant regions, p < 3.5. The
effect of nonlinearity is noticed only in the first resonant region. It is character-
ized by the increase of the slope of the curves with respect to the p-axis with
increasing coefficient K;;3, and by the jump of amplitudes typical for nonlinear
discrete systems described by Duffing’s equation. For the assumed parameters,
no large differences between the frequencies of the external loading, at which the
amplitude jumps occur, are obtained. One can notice that for Kq55 = 0.0125
maximal amplitudes are larger than those for the linear case with Kj33 = 0.
So, the effect of K93 on the displacements is not so regular as in [9] where a
torsional mechanical system is discussed.

0.05
1200 —F,

0.0125 /'

8.00 —

4.00 —

0.00 .

I T I ! [ T |
0.80 1.20 1.60 2.00 240
F1G. 5. Amplitude-frequency curves for dynamic force F(V;) in the nonlinear Model I
for K23 = 0, 0.0125, 0.05, 0.1, 0.15.

Amplitude-frequency curves for the dynamic force F(V;) expressed by (3.3)
are plotted in Fig.5 for K23 = 0, 0.0125, 0.05, 0.1, 0.15 in the first resonant re-
gion, p < 2.2. From Fig. 5 it follows that maximum amplitudes for dynamic forces
in the assumed nonlinear cases are considerably higher than the corresponding
amplitude for the linear case.

Diagrams in Figs.3-5 are obtained for the damping coefficients dp = d;; =
Dy = 0.1. The effect of the damping coefficient dy on displacement V; is shown
in Fig.6. One can notice that the increase of damping causes the decrease of the
maximum amplitudes of the displacements V;. Moreover, the results for dy = 0.3
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2.00 —

p
I ' !
0.80 1.20 1.60 2.00 2.40
F1G. 6. Effect of damping on amplitudes of displacements Vi in the nonlinear Model I for
do = 0.05, 0.], 0.15, 0.2, 0.3 and Kv123 = 0.05.
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0.80 1.20 1.60 2.00 240
FiG. 7. Effect of amplitude P, of the external loading on amplitudes of displacements Vi in
the Model I with P, = 0.25, 0.5, 1.0 and K523 = 0.05.
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[146]
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correspond to the linear case when the jumps of displacement amplitudes do not
occur.

Diagrams in Figs.3~6 are obtained for Py = 1.0. The effect of amplitude P,
of the external force P(t) on displacements V; is shown in Fig.7 for Py = 0.25,
0.5, 1.0, with K23 = 0.05 and dp = 0.1. From Fig.7 it follows that with the
decrease of the values of Py, the maximum displacement amplitudes also decrease.
Moreover, the value Py = 0.25 corresponds to the linear case. Such a value of
the amplitude of the external force (4.12) is assumed in numerical calculations
presented in paper [2] where linear models of the portions of plane trusses are
studied.

From Figs.4, 6, 7 it also follows that if the nondimensional displacements V;
are smaller than 1.0, then the considered nonlinear models with local nonlinearity
and the characteristic of the spring of the hard type may be replaced by linear
models.

5. SOLUTION FOR THE NONLINEAR MODEL II

The Model II differs from the Model I shown in Fig. 3 as far as the conditions
in the joint z = —lysina, y = 0 (z1 = z3 = 0) are concerned. Now, the rigid
body mj is neglected, and the ends of members (1) and (3) are fixed. In the
linear case this model corresponds to the Model I in [2].

The determination of displacements of truss members in the nonlinear Model II
is reduced to solving the equations of motion (4.1) with initial conditions (4.2),
with boundary conditions (4.3)3 — (4.3)s, and with two additional boundary
conditions
(5.1) u1(z1,t) = 0 for z; =0,

uz(z3,t) =0  for z3=0.
In nondimensional quantities (4.5) the problem leads to solving equations (4.6)
with (4.7), (4.8)3 — (4.8)s, and with (5.1) in the unchanged form because bars
denoting nondimensional quantities are omitted for convenience.

Now, the solution of Egs. (4.6) are sought in the form

ui(21,t) = filt — 21+ L) + g1t + 21 = 1),
(5.2) uz(x2,t) = fa(t — w2 + b2) + g2(t + 22 — la),
u3(z3,t) = f3(t —la — 23+ I3) + ga(t ~ lo + 23 — I3).
Comparing the solution (4.9) for the nonlinear Model I with the solution (5.2)

one can notice that these solutions differ only in arguments of the function fs.
Now, according to (2.5) ty, = tg, =lp and 2y, = zy, = I3.
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Substituting (5.2) into the boundary conditions (5.1), (4.8)3 — (4.8)s, and
denoting the largest argument of functions appearing in each equality by z, one
obtains the following equations for unknown functions f;, ¢g;, 1 = 1,2, 3,

fi(z) = —g1(z — 2ly),
f2(2) = —g2(z = 213) — [f3(2 — 2I2) + g3(z — 23)]sin 3,
fa(z) = —g3(z — 23),

(5.3)  mg1(2) = P(2) + r2g1(2) + r3fi'(2) + rafi(2) + 75 f5(2) + 16 f2(2)
+r7[f1(2) + g1(2)] + 18 [f1(2) + 1 (),
92(2) = — fo(2) + [f1(2) + g1(2)] cos B/ cos a,
rog3(2) + T1005(2) + r1193(2) = 7125 (2) + r13f3(2)
+ r14f3(2) + r1595(2) + T1692(2),

where constants 7;, i = 1,2, ...,16, are defined by (4.11).

The numerical examples using Egs. (5.3) are presented for parameters (4.14)
with R3 = 0. Though the method applied in the paper allows to determine dis-
placements in arbitrary cross-sections of the members of the considered nonlinear
Model II, for the sake of clarity in the numerical examples the displacements V3
of the rigid body m; in the steady state are determined. The external force is
assumed in the form (4.12).

In Fig.8 the amplitude-frequency curves for displacements V; are plotted for
the frequency of the external force p < 4.0 with the coefficient multiplying the
nonlinear term in (3.3) equal to Ky93 = 0, 0.0125, 0.05, 0.1, 0.15. From Fig.8
it follows that in the interval p < 4.0, three resonant regions are included while
for the nonlinear Model I we had only two resonant regions for this interval of
p. Next, in the first resonant region one can observe the increase of the slope
of the obtained curves with the increase of the value of the parameter Kio3.
For Ky33 = 0.0125 the largest values of amplitudes are obtained, larger than
those in the linear case and for the remaining Kjy,3 in nonlinear cases. The
jump phenomena typical for nonlinear discrete systems occur only in the first
resonant region. In further resonant regions numerical results coincide with the
corresponding results for the linear case.

The effect of the coefficient K723 on the amplitudes of forces F(V;) defined by
(3.3) is shown in Fig.9 in two resonant regions, p < 2.3. From diagrams in Fig.9
it follows that the jump phenomena are also observed only in the first resonant
region.

Diagrams in Figs.8 and 9 are determined for damping coefficients dg = d;; =
Dy = 0.1 and the amplitude of the external force equal to Py = 1.0. The effect
of parameters dg and Py on the displacements Vi of the rigid body m, is shown
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F1G. 10. Effect of damping on amplitudes of displacements V; in the nonlinear Model II for
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the Model II with P, = 0.25, 0.5, 1.0 and K23 = 0.05.

[150]

0.00 T I T I T




NONLINEAR DISCRETE-CONTINUOUS MODELS 151

in Figs.10 and 11, respectively. From these figures it follows that the increase
of damping leads to the decrease of the maximal amplitudes, and that with
the decrease of Py the maximum amplitudes of Vy also decrease. Linear cases
are obtained for dy = 0.3, P = 1.0 (Fig.10) and for P, = 0.25, dp = 0.1
(Fig.11). It should be pointed out that the linear model corresponding to the
nonlinear Model II is discussed in [2] with Py = 0.25. The jump phenomena
may be observed in the first resonant region. From all diagrams presented in
Figs.8-11 it follows that if V3 < 1.0, the results for nonlinear models coincide
with the results for the linear model.

6. FINAL REMARKS

The method utilizing the wave solution of the equations of motion can be an
efficient tool in dynamic investigations of plane trusses with members subject
to longitudinal deformations and loaded by long-lasting external forces. This
concerns linear as well as nonlinear models.

Applications of this method in the linear cases is demonstrated in [2] on the
example of two linear discrete-continuous models of portions of the plane truss
consisting of members with continuously distributed mass and of rigid bodies
located in the joints. In the present paper it is shown that the approach used
in the paper [2] can be adopted for dynamic investigations of the nonlinear
discrete-continuous models of the plane truss.

For both the nonlinear models discussed, the effect of local nonlinearity is ob-
served in the first resonant region as the jump phenomenon typical for nonlinear
discrete systems. The presented amplitude-frequency curves show not only the
effect of the parameters representing the local nonlinearity, but they also allow
to estimate the displacements at which the local nonlinearities can be neglected
in the considered discrete-continuous models of the truss.

From the comparison of the appropriate amplitude-frequency diagrams for
nonlinear Models I and II it follows that the change of the boundary conditions
in the considered models does not have any significant effect on the amplitudes
of the displacements, except the increase of the number of resonant regions.
However, as it is shown in the paper [2], in numerous cross-sections of the truss
members this effect is significant.

In the paper two simple models of the portions of plane trusses are discussed.
The method used in the considerations can be easily applied to the study of
more complex nonlinear models of plane trusses with longitudinally deformed
members.
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