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To describe motion in a micropolar medium a special measure of curvature is used that
is a strain state characteristic independent of deformation process. The nonlinear constitutive
equations of the couple stress theory are constructed using the method of internal thermo-
dynamic parameters of state. The linearization of these equations in isotropic case yields the
Cosserat continuum equations, where material resistance to the change in curvature is charac-
terized by a single coefficient as against three independent coefficients of the classical theory.
So, it turns out that the developed variant of the model gives an adequate description of gen-
eralized plane stress state in an isotropic micropolar medium, while the classical one describes
this state only at a certain case. The complete system of nonlinear equations for the dynamics
of a medium with couple stresses reduces to a thermodynamically consistent system of laws of
conservation, which allows obtaining integral estimates that guarantee the correctness of the
Cauchy problem and boundary-value problems with dissipative boundary conditions.
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1. PLANE STRESS

A key cause for undertaking this study became a property exhibited by the
classical model of the elastic Cosserat continuum in the small strain approxima-
tion. It turns out that this model gives an adequate description of generalized
plane stress state in an isotropic case exclusively at a certain ratio of elastic
coefficients characterizing resistance of a material to the change in internal cur-
vature. By way of illustration, Fig. 1 shows the stress state generated in an
elastic plate made of a material with microstructure by induced rotation of par-
ticles, uniform with respect to the plate thickness, at a lateral boundary of the
plate, or under influence of couple stresses at the boundary, causing no plate
bending. It is natural in this state to expect nontrivial distribution of couple
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F1G. 1. Plane stress state.

stresses in the plate domain with the corresponding field of independent particle
rotations.

The constitutive equations of the Cosserat continuum in tensor form
(1.1) o=AT:A)T+2uA®+2aA?, m=[(1I:M)I+2yM?® + 2:M?
contain six independent elastic moduli of a material, denoted as in [1]. Here o
and m are the tensors of stresses and couple stresses, A and M are the tensors
of strain and curvature, I is the unit tensor. The indices “s”
symmetric and antisymmetric parts of tensors, respectively: 2A° = A + A*,
2A* = A — A¥*. The common operations of tensor analysis, conforming with
multiplication of tensors by right-hand vectors, are used.

For the tensors of strain and curvature, the kinematic equations hold true:
A= v, — Q and M = W, where v, is the tensor of velocity gradients, {2 and
w are the tensor and vector of angular velocity, a dot above a symbol means
the time derivative. Turning to average values of the velocities and stresses over
the plate thickness by averaging Eqgs. (1.1), we obtain the constitutive equations
for the generalized plane stress state:
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written in terms of the moduli of elastic compliance of a material:

0 A+ 0 — A a_,u+oz I -

UGB+ 2p) 2 203\ +2p)” 57 dpa’ 4 dpc’

blzﬂ bQZ_L b3:7+€ b4:—7_€
(38 +27)’ 2v(38 +27)’ dye ’ dye

If any other averaged projection of the vectors of translational and angular
velocities, except of the used in Egs. (1.2), or any component of the stress tensors
is not equal to zero, then, by virtue of a mechanical sense, the considered state
will not be the state of generalized plane stress because of the loss of symmetry
with respect to the middle plane of a plate.

It follows from the general form of Eqgs. (1.2) that couple stresses may only
be no-zero if by = 0, i.e. when v = e. Taking different coefficients v and e,
it is mathematically incorrect to formulate boundary conditions in terms of
the rotation angles or couple stress effects at the plate boundary, since couple
stresses turn out to be zero everywhere in the plate domain. Thus, there is
a problem of selecting a special curvature measure to be used as a parameter
of state with intent to construct constitutive equations in the nonlinear case
using the principles of equilibrium thermodynamics at smaller number of elastic
coefficients of the linear approximation model.

2. SPECIAL TENSOR OF CURVATURE

The translational motion of a particle in a medium possessing microstruc-
ture is described by an equation x = & + u, connecting the Lagrangian & and
Eulerian x vectors of centers of masses with the displacement vector u(g,t). The
independent rotation of a particle is defined by an orthogonal rotation tensor
R(&,t). The antisymmetric tensor of angular velocity of a particle is calculated
by the formula: = R-R* (hereinafter star denotes the conjugate). As a mea-
sure of deformation of an infinitely small element, it is assumed to take the
tensor A = R* - x¢ — L. By differentiating with respect to time, it is found that
this tensor satisfies the equation:

(2.1) R-A=v:— Q- x,

where v = x is the vector of velocity of translational motion. Aside from the
tensor A, a special curvature tensor M is used, calculated in terms of the rota-
tion tensor R and its derivatives with respect to the Lagrangian variables in the
Cartesian coordinate system: R, = 0R/0¢;, (k = 1,2,3). Let M*) = R -R* be
the antisymmetric curvature tensors along the coordinate lines. The Darboux
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vectors fitting with these tensors are assigned by the columns of M. Differen-
tiating M®*) with respect to time and €2 with respect to the space variables &
yields kinematic equations that admit the tensor representation:

(2.2) M = w; + Q- M.

Note, that it differs from the equation for commonly used curvature measures
[2, 3]. It follows from (2.2) that M is neither an invariant nor an indifferent
tensor, i.e. it changes both under rotation of the actual configuration and under
rotation of the original configuration. It can be shown that the invariance is the
property of the product M™*-M, that must be used as an independent parameter
of state to construct constitutive equations accounting for the couple proper-
ties of a medium, and that leads to a thermodynamically consistent system of
conservation laws.

The expanded form of the curvature measure M in the Cartesian coordinate

system is
Myy Mo Mg 0 =M My
(2.3) M= | My My My |, M® = | My 0 =My,
M3y Mss Mss =My, Mg 0

When solving static problems, the equation (2.3) for M can be used instead of
(2.2) together with the general representation of orthogonal tensor

0 —g @
R=I+sin¢Q+(1—-cosp)Q’ Q=| ¢ 0 —-aq |
—q¢ q O

via the angle of rotation ¢ and the skew-symmetric tensor Q, associated with
the unit vector q = (q1, g2, q3) of rotational axis. In the case of the rotation
around the 3 axis

0 0 0
M = 0 0 0
b1 P2 @3

Note that, in accordance with Eqs. (2.2), the curvature measure coincides with
the classical measure in geometrically linear case.

3. THERMODYNAMICALLY CONSISTENT FORM

System of equations of the dynamics of a medium with couple stresses is
constructed based on the integral laws of impulse, momentum and energy con-
servation. For the case of continuous motions, the integral conservation laws are
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equivalent to the differential equations of translational and rotational motion
and the equation for internal energy:

: 0 a
pov =diveo +f, = (J-w)=divem +2(0-x{)" +g,
(3.1) ot

¢=G*:(U§—Q-X§)+m*:wg—diV§h+H.

Here pg is the initial density, J = R -J°-R* (JV is a given symmetric and
positively definite inertia tensor), o is the Piola-Kirchhoff stress tensor, m is
the couple stress tensor, @ is the internal energy of a medium per unit volume,
f and g are the bulk densities of mass forces and couple forces, h is the heat
flux vector, H is the intensity of internal heat sources, dive is the operator
of divergence with respect to Lagrangian variables, the colon means a double
convolution of tensors, the superscript “a” denotes a vector corresponding to
the antisymmetric part of a tensor.

For the reversible processes, the state of which is characterized with the ther-
modynamic parameters represented by the strain measure A, curvature measure
M and entropy s, the latter equation in the system (3.1) can be rewritten with
regard to (2.1) and (2.2) as

oy . 0P . . . . .
W:A+M:M+Ts=o‘* : (R-A) +m": (M—QM) —diveq + Q,
where T' = 09/0s is the absolute temperature, decomposes due to linear inde-
pendence of the values A, M into the constitutive equations:

. 00 o

heat influx equation:
Ts = —dngh + H,

and a complementary equation: m* : (- M) = 0. In view of the linear inde-
pendence of the projections of the angular velocity vector, the complementary
equation reduces to the symmetry condition for the tensor m - M*, confining
general relationship between the elastic potential @ and the curvature tensor M.
With a pass to the coordinate representation, it is possible to prove that this
condition holds true only when @ is a function of the symmetric tensor M* - M.

In the case of adiabatic approximation of the model, when h = 0, H = 0,
a closed system consists of equations of translational and rotational motion from
(3.1), constitutive equations (3.2), equation R = Q-R for the tensor of rotation
and equation $ = 0 for the entropy.
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Adiabatic internal energy takes the simplest form in the case of physically
linear approximation, when

A

& (A, M) =§(I:A)2+,uAS:As—ozAa:Aa+7M*:M.

Constitutive equations (3.2) in this case are as follows
o=AI:A)R+2uR-A°+2aR-A?*, m = 2yM.
Let T = R* - 0 be a stress tensor making a dual couple with A,
U(t,m,s) =1 :A+m*: M—®(A,M,s)

be a dual potential equal to the Legendre transform from internal energy. Writ-
ten in terms of the dual potential, the constitutive equations (3.2) are given in
inverted form:

0¥ (t,m,s) OV (R"*-o,m,s)

R-A=R- = M =
ot oo ’

0T (R* - o, m, )
om '

Using (2.1) and (2.2), these equations can be written as

00 (R*-0,m,s) 0 9¥ (R*-0,m,s)

y 0T (R* - o, m, s)
ot oo e ot om '

om

= W+

This allows representing the model by a thermodynamically consistent system
of the laws of conservation in the following sense [4]: it is possible to indicate
generating potentials L° and L7, the use of which modifies the complete system
of equations in the Cartesian coordinates as follows

0¥ (R* - o,m,s)

pPoU; = 0ij i + fi, En (Jijw;) = mijj + €ijkom P07 + i,
J V(R -oms) .
(3.3) ot 004 I
o o0 (R* - 0,m, s) 0T (R* - o, m, )
En g = Wi j + €Wk oy )

: 0
Rij = gipwr Ry, s=0, Jij = Jg Ry Ry
(€ijk is the discriminant tensor) and makes it uniform:

0 0L (DU) 9 oL (U) oD




ON THERMODYNAMICALLY CONSISTENT FORM. .. 207

Here U is the column-vector composed of unknown functions, except for the
entropy, namely, projections of vectors of velocity of translational motion and
angular velocity, components of tensors of stresses and couple stresses; D is the
nonsingular matrix, which non-zero and non-unit elements are given by the val-
ues I;j; F and G are the preset vector and matrix functions readily determinable
from the form of the equation. The generating potentials are equal to:

v 1
UL (R w), J) (RT-w), + ¥ (R*-0,m, s),

L°(DU) =
(DU) po—, 5

) (U) = V045 + WiMm;.
The equation for the entropy from (3.3) is not included in the system (3.4),

as it automatically yields an equivalent equation in the form of auxiliary law of
conservation:

0 oLY (DU) 0 oLI (U) .
o (U'T—L <DU>) =% (U'W‘” <U>>
oL° (DU) __,
+ U * F - T . D GU.

The system of equations (3.4) possesses some essential properties reflective of
mathematical correctness of the model. It has a divergent form and can serve
to describe generalized solutions with discontinuous velocities and stresses —
shock waves and contact discontinuities at interfaces of media having different
mechanical properties. Solving such systems involves effective computational
algorithms adapted to calculation of discontinuities [5].

Differentiation brings the system (3.4) into symmetric form:

oo (oi)alo)-(ow)a () (k)

Here the matrices A and B? are symmetric, and, moreover, when the poten-
tial L? (DU) is strongly convex, the matrix A is positively definite. Therefore,
the system of equations (3.4) is of hyperbolic type. The strong convexity con-
dition L° is fulfilled, when the dual potential ¥ (T, m,s) is a strongly convex
function with respect to the set of variables T and m. In this case a priori inte-
gral estimates in characteristic cones for the system (3.5) can be obtained, which
guarantee the unigness and continuous dependence on the initial data of solu-
tions of the Cauchy problem and the boundary-value problems with dissipative
boundary conditions.

In [6, 7] the questions about symmetry and hyperbolicity of the governing
system of equations of the nonlinear Cosserat theory were studied using an
unnatural curvature measure, that could not be represented in terms of actual
displacements and rotations.



208 V. SADOVSKII
ACKNOWLEDGMENT

This work was supported by the Complex Fundamental Research Program
no. IL.2P “Integration and Development” of SB RAS (project no. 0356-2016-
0728).

REFERENCES

1. Pav’mov V.A., Fundamental equations of the theory of asymmetric elasticity, J. Appl.
Math. Mech., 28(3): 496-505, 1964.

2. NIKITIN E., ZuBov L.M., Conservation laws and conjugate solutions in the elasticity of
simple materials and materials with couple stress, J. Elast., 51: 1-22, 1998.

3. PIETRASZKIEWICZ W., EREMEEV V.A., On natural strain measures of the non-linear mi-
cropolar continuum, Int. J. Solids Struct., 46: 774-787, 2009.

4. Gopunov S.K., RoMmENskil E.I., Elements of Continuum Mechanics and Conservation
Laws, Kluwer Academic/Plenum Publishers, New York — Boston — Dordrecht — London —
Moscow, 2003.

5. SADOVSKAYA O., SADOVSKII V., Mathematical Modeling in Mechanics of Granular Ma-
terials, Ser.: Advanced Structured Materials, 21, Springer, Heidelberg — New York — Dor-
drecht — London, 2012.

6. KoNDAUROV V.I., Non-linear equations of the dynamics of an elastic micropolar medium,
J. Appl. Math. Mech., 48(3): 291-299, 1984.

7. SADOVSKII V.M., Thermodynamically consistent system of conservation laws of nonsym-
metric elasticity theory [in Russian], Dal'nevost. Mat. Zh., 11(2): 201-212, 2011.

Received October 11, 2016; accepted version February 14, 2017.



