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The stress- and displacement-fields developed in a circular ring consisting of a finite number
of linearly elastic homogeneous and isotropic concentric layers are determined. The composite
ring is subjected to a distribution of radial stresses (acting along two finite arcs of its periphery)
varying according to a parabolic law. The problem is solved analytically adopting Savin’s
approach for an infinite plate with a hole strengthened by rings. Taking advantage of the
analytic solution, a numerical model is properly calibrated and validated by considering the
case of a three-layered ring. It is concluded that the constructed model simulates reality in an
excellent manner and therefore it can be safely used for a thorough parametric analysis of the
numerous factors influencing the stress- and displacement-fields.
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1. Introduction

The configuration of a circular ring consisting of a finite number of concentric
layers is commonly considered in a number of engineering applications, ranging
from biomechanics (human aorta) to fluid mechanics (insulated pipes). Such
composite rings are usually loaded either by uniformly distributed internal or
external pressure or by a combination of them. A more complicated loading
mode appears when the ring is compressed between the curved jaws of the
device suggested by the International Society for Rock Mechanics (ISRM) [1]
for the standardized implementation of the Brazilian-disc test. The ring is then
under a cyclic distribution of radial stresses that act along two finite arcs of its
periphery (antisymmetric with respect to the geometric centre of the ring) the
length of which depends on the stiffness of the ring and the jaws. The specific
distribution is accurately enough simulated by a parabolic scheme [2].
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In this study, the analytic full-field solutions are introduced for the stresses
and displacements developed in a multi-layered ring under a parabolically vary-
ing pressure. The analytic solution is achieved by adopting the procedure pro-
posed by Savin [3] for an infinite plate with a hole strengthened by rings. The
specific procedure is based on the complex potentials technique introduced by
Muskhelishvili [4]. Its main advantage is that it is extendable to rings made up
of any number of concentric layers.
As a next step, the problem is reconsidered numerically using the finite ele-

ment (FE) method. The FE model is validated taking advantage of the analytic
results for a ring made up of three concentric layers. The validated model is
used for an in-depth parametric analysis of the role of the numerous factors
influencing the solution [5].

2. Analytic solution

Consider a multi-layered ring consisting of n concentric constituent rings
made of different linearly elastic, homogeneous and isotropic materials, firmly
bonded together along their common interfaces. The ring is subjected to in-plane
parabolic pressure along two antisymmetric finite arcs of its outer periphery
while its inner periphery is free from stresses. The length of the loaded arcs
is either determined approximately (from the contact problem of a solid disc
smoothly compressed against the ISRM jaws [1]) or it is arbitrarily prescribed.
Bonding of adjacent rings is ensured by considering equal displacements and
normal and shear stresses of facing material points along their interfaces. This is
a first fundamental problem of plane linear elasticity. Assuming the ring’s length
w comparable to its radius, plane strain conditions are considered. Stresses and
displacements are to be determined at any point of the ring. Its cross-section
lies in the z � reiθ plane and its centre is the origin of the Cartesian reference
system xOy (Fig. 1).
The innermost layer is denoted by 1, while the outermost one by n. L1

and Ln�1 denote the inner and outer boundaries of the ring as a whole. The
j-ring (1 ¤ j ¤ n) is bounded by the Lj and Lj�1 boundaries, for r � Rj

and r � Rj�1. Rings can have different thicknesses. L1 is stress-free. Ln�1 is
loaded by a parabolic pressure (acting along the two arcs, each one of a length
of 2ωoRn�1):

(2.1)
σpn�1q
r � �P pθq � �Pc

�
1� psinφo � θq2psinωoq2 �

,

Pc � P pθqmax.
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Fig. 1. Configuration of the problem and definition of symbols.

In the case when ωo is obtained from the respective contact problem [2], the
following will hold:

(2.2)

ωo � arcsin

d
6KnPframe

πRn�1w
,

Pc �d
3πPframe

32KnRn�1w
,

Kn � κn � 1

4µn
� κJ � 1

4µJ
.

Pframe is the resultant force, and κn, κJ , µn, µJ are Muskhelishvili’s constants
and shear moduli of the outer ring (j � n) and the jaw, respectively. For arbi-
trarily prescribed ωo:

(2.3) Pc � 2Pframe psinωoq2
Rn�1 psin 2ωo � 2ωo cos 2ωoqw.

Each ring j is in elastic equilibrium. The Muskhelishvili’s complex potentials
read as:

(2.4) ϕpjqpzq � �8̧�8 apjqk zk, ψpjqpzq � �8̧�8 bpjqk zk, j � 1, 2, . . . , n.
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The stress- and displacement-components are written in terms of these func-
tions as follows [4]:

σpjqr � iτ pjqθ � ϕpjq1pzq � ϕpjq1pzq � ei2θ �zϕpjq2pzq � ψpjq1pzq�,(2.5)

σ
pjq
θ � σpjqr � 4ℜ

�
ϕpjq1pzq�,(2.6)

upjqr � iupjqθ � eiθ

2µj

�
κjϕpjqpzq � zϕpjq1pzq � ψpjqpzq�.(2.7)

Prime denotes first derivative and over-bar complex conjugate value, while κj
and µj are Muskhelishvili’s constant and shear modulus of the ring j, respec-
tively. Combining Eqs. (2.4)–(2.7) with z � reiθ (Rj ¤ r ¤ Rj�1), stresses and
displacements on the arbitrary j-ring are obtained as:

(2.8) σpjqr � iτ pjqrθ � 8̧
k�0

�
kp2� kqapjqk rk�1eipk�1qθ� kp2 � kqapjq�kr
�pk�1qe�ipk�1qθ � k

�
a
pjq
k rk�1 � b

pjq�kr
�pk�1q	 e�ipk�1qθ�k �apjq�kr

�pk�1q � b
pjq
k rk�1

	
eipk�1qθ�,

(2.9) upjqr � iupjqθ � 1

2µj

8̧
k�0

��k apjqk rkeipk�1qθ � k a
pjq�kr

�ke�ipk�1qθ� �
κj a

pjq
k rk � b

pjq�kr
�k
	
e�ipk�1qθ � �κj apjq�kr

�k � b
pjq
k rk

	
eipk�1qθ�.

Constants a
pjq
k and b

pjq
k are determined by fulfilling the boundary conditions

for the composite ring and the conditions along the interfaces between the con-
stituent j-rings: zero stresses on L1 imply that Eq. (2.8) should be set equal to
zero for j � 1 and r � R1. In addition, parabolic pressure on Ln�1 implies that
Eq. (2.8), for j � n and r � Rn�1, should be set equal to the Fourier series
expansion of the parabolic pressure of Eq. (2.1). Finally, on each one of the
n�1 interfaces Lj�1, Newton’s third law and bonding of adjacent rings along

Lj�1 imply that σ
pjq
r � iτ

pjq
rθ � σ

pj�1q
r � iτ

pj�1q
rθ , u

pjq
r � iupjqθ � u

pj�1q
r � iupj�1q

θ

for r � Rj�1 with j � 1, . . ., n � 1. Comparing coefficients of eiθ terms of the
same order yields the following four systems of equations providing the sought

coefficients a
pjq
k and b

pjq
k :
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(2.10)

2α
p1q
1 �R�2

1 b
p1q�1�0, 2α

pnq
1 �R�2

n�1b
pnq�1 ��Pc

π

�
2ωo� 2ωo�sin 2ωo

2 sin2 ωo

	
,

2α
pjq
1 �R�2

j�1b
pjq�1 � 2α

pj�1q
1 �R�2

j�1b
pj�1q�1 � 0,

µj�1

µj

�pκj � 1qRj�1α
pjq
1 �R�1

j�1b
pjq�1

��pκj�1 � 1qRj�1α
pj�1q
1 �R�1

j�1b
pj�1q�1 � 0

,///.///-, j � 1, 2, ..., n � 1,

(2.11)

R1a
p1q
2 �R�3

1 b
p1q�2 � 0, Rn�1a

pnq
2 �R�3

n�1b
pnq�2 � 0,

2
µ2

µ1
R2

2a
p1q
2 � b

p2q
0 � 2R2

2a
p2q
2 � 0,

µj�1

µj

�
b
pjq
0 � 2R2

j�1a
pjq
2

	� b
pj�1q
0 � 2R2

j�1a
pj�1q
2 � 0, j � 2, 3, ..., n � 1,

Rj�1a
pjq
2 �R�3

j�1b
pjq�2�Rj�1a

pj�1q
2 �R�3

j�1b
pj�1q�2 �0,

µj�1

µj

�
κjR

2
j�1a

pjq
2 �R�2

j�1b
pjq�2

	�κj�1R
2
j�1a

pj�1q
2 �R�2

j�1b
pj�1q�2 � 0

,////.////-, j � 1, 2, ..., n � 1,

(2.12)

3R2
1a
p1q
3 �R�2

1 a
p1q�1 � b

p1q
1 � 0, R2

1a
p1q
3 �R�2

1 a
p1q�1 �R�4

1 b
p1q�3 � 0,

3R2
n�1a

pnq
3 �R�2

n�1a
pnq�1 � b

pnq
1� Pc

π

�
sin 2ωo � 1

2 sin2 ωo

�
sin 2ωo � ωo � sin 2ωo cos 2ωo

2

��
e�i2φo ,

R2
n�1a

pnq
3 �R�2

n�1a
pnq�1 �R�4

n�1b
pnq�3� �Pc

3π

�
sin 2ωo � 1

2 sin2 ωo

�
sin 2ωo � ωo � sin 2ωo cos 2ωo

2

��
e�i2φo ,

R2
j�1a

pjq
3 �R�2

j�1a
pjq�1�R�4

j�1b
pjq�3�R2

j�1a
pj�1q
3 �R�2

j�1a
pj�1q�1 �R�4

j�1b
pj�1q�3 �0,

3R2
j�1a

pjq
3 �R�2

j�1a
pjq�1�bpjq1 �3R2

j�1a
pj�1q
3 �R�2

j�1a
pj�1q�1 �bpj�1q

1 � 0,

µj�1

µj

�
κjR

3
j�1a

pjq
3 �R�1

j�1a
pjq�1 �R�3

j�1b
pjq�3

	�κj�1R
3
j�1a

pj�1q
3 �R�1

j�1a
pj�1q�1 �R�3

j�1b
pj�1q�3 � 0,

µj�1

µj

�
3R3

j�1a
pjq
3 � κjR

�1
j�1a

pjq�1 �Rj�1b
pjq
1

	�3R3
j�1a

pj�1q
3 � κj�1R

�1
j�1a

pj�1q�1 �Rj�1b
pj�1q
1 � 0

(the last four equations of the (2.12) system are valid for j � 1, 2, . . ., n� 1).



438 CH.F. MARKIDES, E.D. PASIOU, S.K. KOURKOULIS

(2.13)

kRk�1
1 a

p1q
k �R

�pk�1q
1 a

p1q�pk�2q �Rk�3
1 b

p1q
k�2 � 0,

Rk�1
1 a

p1q
k � pk � 2qR�pk�1q

1 a
p1q�pk�2q �R

�pk�1q
1 b

p1q�k � 0,pk � 2q�kRk�1
n�1a

pnq
k �R

�pk�1q
n�1 a

pnq�pk�2q �Rk�3
n�1b

pnq
k�2

	� Pc

π

!
sinpk�1qωo

k�1
� 1

2 sin2 ωo

�
sinpk�1qωo

k�1� pk�1q cos 2ωo sinpk�1qωo�2 sin 2ωo cospk�1qωo

4�pk�1q2 �)�
1� e�ikπ� e�ipk�1qφo ,

k
�
Rk�1

n�1a
pnq
k � pk � 2qR�pk�1q

n�1 a
pnq�pk�2q �R

�pk�1q
n�1 b

pnq�k

�� �Pc

π

!
sinpk�1qωo

k�1
� 1

2 sin2 ωo

�
sinpk�1qωo

k�1� pk�1q cos 2ωo sinpk�1qωo�2 sin 2ωo cospk�1qωo

4�pk�1q2 �)�
1� e�ikπ� e�ipk�1qφo ,

kRk�1
j�1a

pjq
k �R

�pk�1q
j�1 a

pjq�pk�2q �Rk�3
j�1b

pjq
k�2�kRk�1

j�1a
pj�1q
k �R

�pk�1q
j�1 a

pj�1q�pk�2q �Rk�3
j�1b

pj�1q
k�2 � 0,

Rk�1
j�1a

pjq
k � pk � 2qR�pk�1q

j�1 a
pjq�pk�2q �R

�pk�1q
j�1 b

pjq�k�Rk�1
j�1a

pj�1q
k � pk � 2qR�pk�1q

j�1 a
pj�1q�pk�2q �R

�pk�1q
j�1 b

pj�1q�k � 0,

µj�1

µj

�
kRk

j�1a
pjq
k � κjR

�pk�2q
j�1 a

pjq�pk�2q �Rk�2
j�1b

pjq
k�2

	�kRk
j�1a

pj�1q
k � κj�1R

�pk�2q
j�1 a

pj�1q�pk�2q �Rk�2
j�1b

pj�1q
k�2 � 0,

µj�1

µj

�
κjR

k
j�1a

pjq
k � pk � 2qR�pk�2q

j�1 a
pjq�pk�2q �R�k

j�1b
pjq�k

��κj�1R
k
j�1a

pj�1q
k � pk � 2qR�pk�2q

j�1 a
pj�1q�pk�2q �R�k

j�1b
pj�1q�k � 0,pk � 5, 7, 9, ...q.

Again, the last four equations of the (2.13) system are valid for j � 1, 2, . . .,

n�1. Notice that with zero shear stresses on Ln�1, all coefficients a
pjq
k , b

pjq
k found

above are real. Eventually, the complex potentials for each j-ring (recalling that

b
p1q
0 � 0 and a

p1q
0 � a

p2q
0 � ... � a

pnq
0 � 0, since these terms are related to rigid

body motion) are written as:

ϕpjqpzq � α
pjq
1 z � a

pjq
3 z3 � ¸

k�5,7,9,...

a
pjq
k zk � apjq�1z

�1 � ¸
k�5,7,9,...

a
pjq�pk�2qz�pk�2q,

j � 1, 2, ..., n,



A MULTI-LAYERED RING UNDER PARABOLIC PRESSURE 439

ψpjqpzq � b
pjq
1 z � ¸

k�5,7,9,...

b
pjq
k�2z

k�2 � b
pjq�1z

�1 � b
pjq�3z

�3 � ¸
k�5,7,9,...

b
pjq�kz

�k,

j � 1, 2, ..., n.

3. The numerical model and concluding remarks

The problem is now resolved numerically under plane strain conditions, using
the ANSYS software. For optimum simulation of the boundary conditions, both
the ring and the jaws were modelled. The model was meshed with PLANE182
element. Three layers were considered, perfectly bonded to each other. In con-
trast, various friction coefficients f were considered along the ring-jaw interface,
which was modelled with CONTA171 and TARGE169 elements. The lower side
of the lower jaw was clamped and a uniform displacement was imposed on the
upper side of the upper jaw. Convergence analysis indicated that 60 000 ele-
ments provided sufficient accuracy. One quarter of the model is shown in Fig. 2.
The data used are: Rj � 15, 31, 35, 50 mm (j � 1, 2, 3, 4); Ej � 10, 2.1, 3.2 GPa,
νj � 0.30, 0.38, 0.36 (j � 1, 2, 3). For the jaws: Rjaw � 75 mm, Ejaw � 210 GPa,
νjaw � 0.3.

Fig. 2. The numerical model.

In Fig. 3, the transverse stress σθ along y-axis is plotted for a series of
f -values, together with the respective analytic results. It can be seen that the
agreement is satisfactory. Some discrepancies in the vicinity of the ring-jaw
contact arc (y Ñ R4) for increased values of f are due to the fact that the
analytic solution did not take friction into account. Thus, it is concluded that the
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Fig. 3. Analytic and numerical results for the σθ stress along y-axis
(left) and a detailed view close to the ring-jaw contact arc (right).

present numerical model can be safely used for practical purposes and parametric
studies of the numerous factors influencing the stress field. The specific project
is already in progress with very encouraging results [5].
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