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In this paper, a two-dimensional (2D) model of the dynamics of mitral valve with chordae
is developed based on in vivo data of the periodical motion of the valve leaflets digitized
from the ultrasound imaging. The chordae are considered as viscoelastic springs described by
the five-element rheological model. The model allows fast numerical computations of forces in
the chordae and leaflets at different locations of the chordae of a different order. It can be used
in real-time computations of the patient-specific geometry for optimal surgery planning when
the mitral valve insufficiency is associated with broken chordae, and neochordae implantation
is needed.
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1. Introduction

Development of mechanical models of biological tissues and numerical esti-
mation of their strength and durability has become an important component
of surgery planning based on patient-specific geometry [1–3]. The models of
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the coronary and carotid stenosis, brain and aortic aneurysms, heart chambers
and valves have been developed based on three-dimensional (3D) geometry re-
stored from computed tomography (CT) data [2, 3]. The mitral valve (MV) is
located between the left atrium and ventricle; it consists of two flexible leaflets
composed of inextensible viscoelastic material (Figs. 1a, b). The leaflets are open
during the atrial systole when the pressure is greater in the atrium and closed
in ventricular systole when the blood pressure becomes greater in the ventri-
cle. The valve provides unidirectional blood flow from the atrium (A in Fig. 1a)
into the ventricle (V in Fig. 1a) during the systole because the reverse movement
of the leaflets is restricted by a family of threads (chordae) connecting the sur-
faces of the leaflets to the papillary muscles (PM) in the ventricles. If the chordae
are ruptured or over distended, MV is not closed properly when the heart pumps
blood out, and the mitral insufficiency develops [4]. Then cardiac surgery with
neochordae implanting is obligatory. The age-related and pathological changes
of the leaflets can affect its mechanical integrity, which may result in incomplete
closure (MV regurgitation) which is the second most common valvular problem
among elderly persons in Europe. The bottom view of the MV with incomplete
closure of the two leaflets can be restored from 3D transesophageal ultrasound
(US) examination. Surgical interventions are based on polytetrafluoroethylene
(PTFE) neochordae reconstruction that normalizes the valve biomechanics. Un-
fortunately, in ∼40–50% of cases the surgery is unsuccessful and the remaining
intact chordae become over distended or ruptured due to high stresses experi-
enced by them or trauma produced by stretched PTFE strings.

a) b)

Fig. 1. 3D (a) and 2D (b) schemas of the mitral MV construction: 1 – leaflets, 2 – basal
(secondary) chordae, 3 – marginal (primary) chordae, 4 – papillary muscle, 5 – heart walls,

6 – cross-sectional plane, A – left atrium, V – left ventricle.

Since the heart with its valves and chordae possesses very complex geometry
and biomechanics, the 2D and 3D modeling of its dynamics, computations of
the stress-strain state, biomechanical interpretation of the numerical results,
and in silico planning and quantitative estimation of the outcome of surgery
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are of great importance. The 2D geometry of the heart valves can be obtained
from heart ultrasound (HUS) examination that gives us real-time imaging of the
periodic heart contraction and leaflets’ displacements, though the chordae are
hardly visible there [5]. The HUS side view (Fig. 2a) gives a dynamic image of
the heart chambers, PM and leaflets, which is suitable for the 2D modeling. The
positions of the leaflets can be digitized (Fig. 2b) and used for the modeling
purposes. In this case, the 2D model corresponds to some cross-sectional plane
(6 in Figs. 1a, b) with a slice of the leaflet and the set of chordae connected to
it. When the neochordae surgery is conducted on the stopped heart, the in situ
geometry of the chordae can be directly estimated and introduced into the model,
provided the computation times are reasonably short to simulate the results of
possible different locations of the neochordae.

a) b)

Fig. 2. HUS image (a) and digitized movements of the MV leaflets (b).

The multi-row CT produces a series of 2D slices of the heart structures taken
at the moments when the valve is closed. The 3D structure can be automatically
restored from the large set of 2D images [6]. Since each measurement gives a quite
thin set of slices, for instance, h = 0.7 mm for 64-row CT, a long series of
consequent measurements along the heart axis is needed to obtain the whole
heart geometry (H = 10–14 cm). Therefore, the reconstructed 3D structure
consists of 2D images taken at different heart contractions. The chordae remain
invisible again but some suggestions on their location can be formulated because,
at the sites of fastening of the chordae to the leaflets, the corresponding leaflet
area is slightly thicker (Fig. 1b). Sometimes thick basal (d = 2–3 mm) chordae
connected to the leaflet surface could be visible, while the marginal (0.5–1 mm)
chordae fastened to the edge of the leaflet were invisible. The basal chordae often
exhibit branched structures (Fig. 2b). Detailed anatomical studies on human
hearts revealed at least two basal chordae in 100% of anterior leaflets and 63.6%
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of posterior leaflets [7]. Individual geometry and location of the basal chordae
influence severity of the valve insufficiency [8].

In the past, different 2D finite element method (FEM) models have been
built and tested without the chordae [9], and with a set of single chordae at-
tached along the edges of the leaflets only [10]. The FEM computations are
time-consuming and geometry-dependent. Therefore, more elaborate numerical
computations are needed to estimate the influence of different characteristics of
the normal or affected patient-specific geometry and material parameters on the
stress-strain state of the system modelled.

Special comparative analysis of the mass-spring (MS) and FEM valve models
of the heart leaflets revealed that the MS model is less accurate but approx-
imately an order of magnitude faster than the FEM models [11]. Contrary to
FEM, the MS model does not have direct mechanism to control shear stresses
in the soft tissues. However, because the shear loading of the pressurized leaflets
is much smaller than the normal forces experienced by them, the MS model
approximates the deformations with small errors despite complex biomechanical
properties of the leaflets [11].

The 3D geometry of the MV obtained from CT is static and corresponds to
the closed valve with stretched chordae. In that way, introducing realistic dynam-
ics of the leaflet motion into FEM models can be done using special experimental
techniques. In [12], a set of radiopaque markers were attached at the areas of
connection between a chorda and the leaflet surface. Location of the markers was
detected and used for development of the dynamical 3D model. The chordae were
modelled as tension-only elements radiating from the PM tips. The model was
used for inverse problem solution, i.e., determination of the mechanical forces
from known dynamic trajectories, and rough estimation of material properties
of the mitral MV tissues.

The brief literature review demonstrates a set of different problems in patient-
specific modeling of the MV dynamics especially for fast real-time numerical
computations and analysis of the stress distribution in the tissues, especially
for surgery planning and decision making during the surgery on a stopped or
unstopped heart. Reasonable simplification of the model is crucial for solving the
problem in PBARL. It is SIEMENS software for digital simulation solutions by
bar elements in NASTRAN. Moreover, the sensitivity of the model to individual
rheological parameters of the tissues and its ability to give reliable quantitative
estimations is of great importance.

In this paper, a reasonable mechanical model of the MV leaflets dynami-
cally interacting with blood flow, PM and a set of chords is proposed. The very
first computational results have been recently reported [13, 14]. FEM computa-
tions are time-consuming, and a special CFD team is needed to conduct them.
In contrast, the modeling and approach stated below can be used for fast pre-
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liminary analysis and planning the surgery on the restoration of the ruptured or
over distended chordae. Our approach allows further automatic computations on
a corrected model when the heart is stopped, and new details on patient-specific
geometry, diameters of chordae, thickness and rigidity of the leaflets and other
soft tissues become known. The model can be used by surgeons themselves, as
it comes with a user friendly interface.

2. Materials and methods

For this study, the MV dynamics were recorded by HUS (side view) on healthy
volunteers and patients of Vilnius University Hospital Santariškių Klinikos, Car-
diosurgery Department with different types of MV regurgitation. The consequent
images sampled at the time interval ∆t = 0.07 s were digitized, and locations of
the anterior (AL, longer one) and posterior (PL, shorter one) MV leaflets were
determined. Both leaflets were considered as k-link flexible threads which seg-
ments k = 1, 2, . . ., kAL and k = 1, 2, . . ., kPL. The lengths of the segments were
chosen as equal. An example of the dynamics of the AL and PL of a healthy
individual is presented in Fig. 3. The leaflets exhibit complex trajectories in
the (x, y) coordinate system. The points of attachments of the AL and PL to
the heart walls also demonstrate quite complex patient-specific trajectories that
typically have double-8 shapes (curves 1, 2 in Fig. 4). The initial part of the
trajectories starts with a short linear displacement between t = 0 and t = t1,
and for the example given in Fig. 3 t1 = 0.14 s (Fig. 4). Then, the heart starts
a reverse movement and reaches its peak at t = t2 corresponding to early dias-

Fig. 3. Consequent locations of the AL (right side) and PL (left side) during the heart
contraction from t = 0 to t = 0.91 s.
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Fig. 4. Trajectories of the basis (1, 2) and edges (3, 4) of AL (2, 4) and PL (1, 3)
in the (x, y) coordinates.

tole; in the case considered in Fig. 3 t2 = 0.63 s (Fig. 4). At t > t2, the direction
of the heart motion is reversed again until it returns into the initial state.

The free edges of the leaflets demonstrate the closed loop trajectories almost
without self- cross-sections (curves 3, 4 in Fig. 4). The two loops have a com-
mon path of their trajectories at t1 < t < t2, which corresponds to the closed
valve when the leaflets are moving in a tight contact that is clearly visible in
the curves 3 and 4 (Fig. 4). Those curves are the result of the superposition
of the movements of the leaflets generated by the blood flow streams passing
into the ventricle and out of it, and the displacements of the (x, y) coordinate
system together with moving heart walls.

Subtraction of the coordinate system movements (i.e., trajectories of the
basis, curves 1 and 2 in Fig. 4) from the trajectories of the edges (curves 3 and 4
in Fig. 4) gives trajectories of the relative movements of the valves in the (x, y)
coordinates which become more regulate and could be easily approximated by
exponent functions yj = bj exp(ajxj). The results of subtraction (curves 1 and 2)
in comparison to visible trajectories (curves 3 and 4) are presented in Fig. 5 for
the n = 8 point in each multilink model counting from the base of both AL and
PL (see numeration in Fig. 2b). The curves 3 and 4 represent the actual repeated
displacement of the node. Being supplied by in vivo measurements of the blood
pressure in the left side of the heart, the curves may serve for computations of
the energy used for a cycle of the valve motion. That type of curves is prevalent
in heart biomechanics and advanced medical diagnostics based on the typical
shapes of the displacement curves in normalcy and pathology.
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Fig. 5. Trajectories of the relative movement of the basis (1, 2) and edges (3,4) of AL (2, 4)
and PL (1, 3) with own heart trajectories subtracted.

Next, the displacements of the nodes of AL and PL in each 2D (HUS) mea-
sured case were computed. A sample of the displacement

dn(tk) =
√

(xnk − xn0)2 + (ynk − yn0)2

relative to initial location (at t = 0) computed for the nodes n = 0, ..., 9 of the PL
is presented in Fig. 6a. The displacements were computed on the 2D measured
data such as curves 3 and 4 in Figs. 4 and 5, without subtraction of the heart
movement. The computed curves were compared to the 3D measurements of the
displacement field of a set of radiopaque markers attached to the MV leaflets
of ovarian hearts [12]. In Fig. 6b, the distribution of the radiopaque markers is
presented. In [12] the 3D displacement fields were computed by averaging data
from the measured markers over the entire surface of the leaflets. Comparison of
our 2D computed data to the distribution of the 3D displacement fields along the
virtual 2D slices (marked in Fig. 6b by elongated rectangles) showed very good
qualitative correspondence (Fig. 6c). The quantitative differences are explained
by different dimensions, heart rates, blood pressure and valve biomechanics in
sheep and humans.

In this study, ten mitral valves were analysed, and the dependencies yj =
bj exp(ajxj) were obtained for five healthy individuals, while the patients with
different MV insufficiencies demonstrated more complex irregular dynamics of
their (x, y) trajectories. This implies that the simplified dynamical description
of the healthy MV can be described by a series of exponential type trajectories
for each joint of the multilink model of the MV leaflets. It enables generation
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a)

b) c)

Fig. 6. Displacements of n = 1, . . ., 6 nodes of the PL model (a) and location of the radiopaque
markers on the PL [12] (b).

of realistic 3D movements of the valve surface, without experimental technique
described in [12], by using the non-invasive HUS data only, which is confirmed
by the qualitative correspondence of the HUS-based measurements and realistic
3D MV movements measured in vivo. A more detailed recommendation may be
given by evaluation of data from a representative group of each type of the MV
insufficiency.

3. Mathematical formulation of the chordae dynamics

The considered complex biomechanical system is studied here as a holonomic
mechanical system with some finite number of degrees of freedom (DOF) de-
scribed by the generalized coordinates qp, p = 1, 2, . . . Then its movement can
be presented in the form of the Lagrange’s equations of the second kind:

(3.1)
d
dt
∂L

∂q̇p
− ∂L

∂qp
= Qp +Rp,
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where L is the Lagrange function for the heart muscle, Qp are generalized forces
produced by the action of the moving chordae on the valves, and Rp are gener-
alized forces produced by other factors.

As it follows from (3.1), the modeling of mechanical behaviour of the chor-
dae is reduced to determining the generalized forces Qp and Rp, p = 1, 2, . . .
The patient-specific geometry of the chordae will be described by the index
s = 1, 2, . . . (Fig. 7a). The chordae system is presented by both single and
branched chords. Then it is assumed the chorda s has µ(s) ends numerated as
i = 1, 2, . . . , µ(s); location of each chord is determined by the position vectors
ρ
(s)
i (Fig. 7b). When the valve is open, the chordae are not stretched and slack,

which means that their interaction with the leaflets is determined by the main
force vector directed along the corresponding rectilinear segment, while the net
moment of force in the attachment points (n = 1, 2, 3, . . . in Fig. 2b) is zero.
Let us denote as Φ

(s)
i the main force vectors acting onto the valve and applied

in the nodes i = 1, 2, . . . , µ(s) (Fig. 7b). As a sample of the complex structures,
the branched chord is considered (solid linens in Fig. 7b). Now the generalized
forces Qp, p = 1, 2, . . . can be calculated from the virtual work δA produced by
the forces Φ

(s)
i , i = 1, 2, . . . , µ(s) in the chordae s = 1, 2, . . . attached to both

leaflets

(3.2) δA =
∑

s=1,2,...

µ(s)∑
i=1

Φ
(s)
i · δρ

(s)
i ,

where δρ(s)i are virtual displacements of the chordae ends.

a) b)

Fig. 7. A sample of individual geometry of the chordae (a) and the forces produced by them
at the leaflet and papillary muscle (b); s = 1, 2, . . . are ordinal numbers of the chordae.

Since locations of the basal ends of the chordae coincide with contracting
heart tissues, the position vectors ρ(s)i could be defined via the generalized coor-
dinates qp assuming the constraints between the chordae and tissues are station-
ary: ρ(s)i = ρ

(s)
i (q1, q2, . . . , qp, . . .), which is natural for the incompressible fibrous
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tissues. Then after some transformations of Eq. (3.2) the generalized forces can
be obtained in the form

(3.3) Q̂p =
∑

s=1,2,...

µ(s)∑
i=1

Φ
(s)
i ·

∂ρ
(s)
i

∂qp
.

As it is stated by (3.3), for computations of Qp the expressions for Φ
(s)
i are

needed. Those expressions are determined by known (measured) movements of
the leaflets and deformation of the chordae.

3.1. Modeling of chords as viscoelastic threads

Let us consider the single chordae as elastic threads with Young’s modulus
proper for elastic materials and biological tissues (E = 105–108 Pa) and zero
bending rigidity. Such chordae can sustain quite high stresses produced by the
blood pressure in the heart chambers but become easily bent and slack when
the valve is open. The current length of the thread in the stretched state can
be described by the distance between its ends A and B determined by their
positional vectors rA and rB (Fig. 3). Then the length and the elongation rate
of the thread are

(3.4)

 l =
√

(rB − rA) · (rB − rA),

l̇ = (rB − rA) · (ṙB − ṙA)
/√

(rB − rA) · (rB − rA).

Together with the geometric constraints (3.4), we assume the internal forces
acting at any infinitesimal segment SS′ (dl � |AB|) of the thread on its cross-
sections S and S′ are equivalent to the main force vectors F and F′ directed
along the thread in its current position where F′ = −F (Fig. 8). The forces FA
and FB at the ends A and B of the thread satisfy the same condition FB = −FA.
Due to zero bending rigidity of the threads, the forces F, F′, FA, FB are purely
stretching ones. The main vectors of internal forces have the same value F = |F|
in each cross-section of the stretched thread, which is a tensile force.

Fig. 8. A stretched thread and its internal forces.
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The mechanical behaviour of the viscoelastic thread is described by the de-
pendence

(3.5) F = F
(
l − l0, l̇

)
,

where l0 is its length in the unloaded (unstrained) state.
As it follows from (3.4) and (3.5), the tensile force is the function of the initial

length, current coordinates and elongation rate

(3.6) F = F (rA, rB, ṙA, ṙB; l0) .

Note that Eq. (3.6) is a nonlinear function even when the linear viscoelasticity
model is accepted for the thread material.

3.2. Modeling the mechanical behaviour of the rectilinear threads

In the simplest case, the chorda possesses two ends attached to the PM and
the leaflet accordingly (e.g., the chorda s = 2 in Fig. 7a) and µ(s) = 2 (Fig. 9a).
The mechanical behaviour of such chorda is determined by the law (3.5) only.
Indeed, in the case µ(s) = 2 the forces produced by the chorda s at the leaflet
and PM are functions of its tensile force (Fig. 9a):

(3.7)


Φ

(s)
1 = Φ(s)

(
ρ1,ρ2, ρ̇1, ρ̇2; l

(s)
0

) ρ2 − ρ1√
(ρ2 − ρ1) · (ρ2 − ρ1)

,

Φ
(s)
2 = −Φ

(s)
1 ,

where Φ(s)
(
ρ1,ρ2, ρ̇1, ρ̇2; l

(s)
0

)
is the mechanical law for the chorda expressed in

the form (3.6).

a) b)

Fig. 9. A leaflet with a set of six rectilinear chordae (a) and with one rectilinear and two
branched chordae (b).
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The expressions (3.7) are needed for computations of the generalized forces
Qp by (3.3). When all the chordae are rectilinear (Fig. 9a), one can obtain the
expressions (3.7) written for each chorda in the structure, which gives the system
of nonlinear equations for determination of the generalized forces that may be
solved numerically.

3.3. Modeling the mechanical behaviour of the branched threads

The branched chordae can be considered as a system of viscoelastic threads
attached together at some nodes outside of the leaflets (Fig. 9b). The forces
appearing in the nodes are directed along the stretched segments and obey New-
ton’s third law. An example of the force distribution is presented in Fig. 9b for
µ(s) = 4. In the internal segments attached to neither PM nor leaflet, the internal
tensile forces N(s)

1 appear. In a general case, we have m(s) nodes determined by
the position vectors r(s)j numerated by the index j = 1, 2, . . . , m(s), as well as

ν(s) internal segments experiencing the tensile forces N(s)
k , k = 1, 2, . . . , ν(s).

Let us denote J (s) (i) as the ordinal number of the node connected to the
end i ∈ 1, 2, . . . , µ(s) of the chorda s. Similarly, J (s)

1 (k) and J
(s)
2 (k) are the

ordinal numbers of the nodes of the chorda s, which are connected to the internal
segment number k ∈ 1, 2, . . . , ν(s). N(s)

k and −N(s)
k are the forces acting in the

nodes with numbers J (s)
1 (k) and J

(s)
2 (k) accordingly. Then, the forces Φ

(s)
i ,

i = 1, 2, . . . , µ(s), and N(s)
k , k = 1, 2, . . . , ν(s), can be computed as follows:

(3.8) Φ
(s)
i = Φ

(s)
i

(
ρ
(s)
i , r(s)

J(s)(i)
, ρ̇

(s)
i , ṙ(s)

J(s)(i)
;λ

(s)
i0

)
·

ρ
(s)
i − r(s)

J(s)(i)√(
ρ
(s)
i − r(s)

J(s)(i)

)
·
(
ρ
(s)
i − r(s)

J(s)(i)

) ,

(3.9) N(s)
k = N

(s)
k

(
r(s)
J
(s)
1 (k)

, r(s)
J
(s)
2 (k)

, ṙ(s)
J
(s)
1 (k)

, ṙ(s)
J
(s)
2 (k)

; l
(s)
k0

)

·
r(s)
J
(s)
2 (k)

− r(s)
J
(s)
1 (k)√(

r(s)
J
(s)
2 (k)

− r(s)
J
(s)
1 (k)

)
·
(
r(s)
J
(s)
2 (k)

− r(s)
J
(s)
1 (k)

) ,

where
Φ
(s)
i

(
ρ
(s)
i , r(s)

J(s)(i)
, ρ̇

(s)
i , ṙ(s)

J(s)(i)
;λ

(s)
i0

)
and λ

(s)
i0
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are the dynamics law and initial undisturbed length of the corresponding marginal
segment,

N
(s)
k

(
r(s)
J
(s)
1 (k)

, r(s)
J
(s)
2 (k)

, ṙ(s)
J
(s)
1 (k)

, ṙ(s)
J
(s)
2 (k)

; l
(s)
k0

)
and l

(s)
i0

are the dynamics law and initial undisturbed length of the corresponding internal
segment.

Since ρ(s)i = ρ
(s)
i (q1, q2, . . . , qp, . . .), the forces (3.8) can be determined as

(3.10) Φ
(s)
i = Φ

(s)
i

(
q1, q2, . . . , q̇1, q̇2, . . . , r

(s)

J(s)(i)
, ṙ(s)
J(s)(i)

)
.

After substitution (3.10) into (3.3), one can obtain the following expressions
for the generalized forces as functions of the generalized coordinates and their
time derivatives:

(3.11) Qp = Qp

(
q1, q2, . . . , q̇1, q̇2, . . . , r

(s)
1 , . . . , r(s)

m(s) , ṙ
(s)
1 , . . . , ṙ(s)

m(s)

)
,

in which all the structures s = 1, 2, . . . are taken into account.
Since the chordae are thin threads and their mass is negligibly small in com-

parison to the heart tissues mass, the movement of the nodes is determined by
Newton’s second law in the matrix form:

(3.12)
µ(s)∑
i=1

M
(s)
ji Φ

(s)
i +

ν(s)∑
i=1

Λ
(s)
ji N

(s)
i = 0, j = 1, 2, . . . , m(s),

whereM (s)
ji and Λ(s)

jk are the matrices determined by the geometry of the branched
chordae; when the fibers j and i are connected, the element located in the j-th
row and i-th column is equal to one; otherwise it is zero.

Substituting (3.9), (3.10) into (3.12), we obtain the differential relationships
which at known generalized coordinates q1, q2, . . . determined by the heart move-
ment can be considered as differential equations for determination of the position
vectors r(s)j , j = 1, 2, . . . , m(s), of the nodes. Therefore, the proposed mathemat-
ical model of heart biomechanics includes the Lagrange’s Eq. (3.1) for the heart
tissues, that, accounting for (3.11) are coupled and must be integrated together
with differential equations for displacements of the nodes (3.8), (3.9), (3.12).

4. Analysis of mechanical behaviour
of the branched elastic chord

For the model validation reasons let us assume the viscous forces are small
in comparison to the elastic ones. Then (3.5) can be written as

(4.1) F = F (l − l0) .
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Accounting for (4.1), we may accept instead (3.8), (3.9) the following expres-
sions:

(4.2)



Φ
(s)
i =Φ

(s)
i

(
ρ
(s)
i , r(s)

J(s)(i)
;λ

(s)
i0

) ρ
(s)
i − r(s)

J(s)(i)√(
ρ
(s)
i − r(s)

J(s)(i)

)
·
(
ρ
(s)
i − r(s)

J(s)(i)

) ,

N(s)
k =N

(s)
k

(
r(s)
J
(s)
1 (k)

, r(s)
J
(s)
2 (k)

; l
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For the linear elasticity, the law (4.1) and expression (4.2) have the form:

(4.3) F = c (l − l0) ,

(4.4)
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where c is the rigidity coefficient for the thread, and γ(s)i and c(s)k are stiffness of
the marginal and internal nodes of the branched chord accordingly.

Substituting (4.4) into (3.12), we obtain the mathematical model of the lin-
ear elastic weightless chorda. The model is presented as a system of non-linear
algebraic equations for determination of locations of the nodes governed by the
known movement of the leaflets.

Let us consider the mechanical behaviour of the branched chorda with one
internal node (Fig. 10). In the case µ(s) = 3, m(s) = 1, ν(s) = 0, M (s)

ji =(
−1 −1 −1

)
, and the expressions (4.4) have the form:
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(4.5) Φ
(s)
i =

γ
(s)
i

(√(
ξ
(s)
i − x

(s)
1

)2
+
(
η
(s)
i − y

(s)
1

)2
− λ(s)i0

)
√(

ξ
(s)
i − x

(s)
1

)2
+
(
η
(s)
i − y

(s)
1

)2
·
((
ξ
(s)
i − x

(s)
1

)
i +
(
η
(s)
i − y

(s)
1

)
j
)
,

where ξ(s)i and η
(s)
i are coordinates of the ends of the chorda, (x(s)1 , y(s)1 ) are

coordinates of its nodes, i and j are unit vectors of the coordinates (x, y).

Fig. 10. An example of chorda with one branching mode.

Then from Eq. (4.5) one can obtain the nonlinear system of two equations
for determination of the coordinates of the internal node (x(s)1 , y(s)1 ) in the form:

(4.6)
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)2 ,
where the coordinates of (ξ(s)i , η(s)i ) of the fastening points are known from the
measurement data of the papillary muscle (s = 1) and two points of the leaflet
(s = 2, 3) location at each instant time. Solution of (4.6) could be easily obtained
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by using Newton’s method with the initial approximation of the solution in the
linear form

x
(s)
1 =

3∑
i=1

γ
(s)
i ξ

(s)
i

3∑
i=1

γ
(s)
i

, y
(s)
1 =

3∑
i=1

γ
(s)
i η

(s)
i

3∑
i=1

γ
(s)
i

.

The computation results may be validated by comparative analysis of the com-
puted displacements of the nodes and the in vivo detected locations of the ra-
diopaque beads introduced into the heart structures and nodes in acute ex-
periment on animals [15] or direct measurements of the tensile stresses in the
chordae/neochordae in the contracting heart in situ by the stress sensors [16].

5. Results and discussion

Despite the fact that the technical viscoelastic materials are characterized
by single stress and strain relaxation times in the corresponding isometric and
isotonic experiments, the biological soft tissues possess a set of stress and strain
relaxations depending on the strain and stress values. In this study, the recent
experimental data on rheological properties of the chordae in ovine hearts [17]
was presented. The extensometer tensile tests were conducted on 18 fresh samples
of the hearts. The measured data reveals nonlinear elasticity and correspondence
to the five-element rheological model (Fig. 11a) with strain-dependent Young’s
modules (Fig. 11b). The elastic and viscous parameters used in this study are
presented in Table 1.
a) b)

Fig. 11. Rheological model of the chorda’s material.

The geometry of the mitral valve (dimensions, the location of the PM, valve
dynamics) was taken for each case from the HUS records. The 10-link and 8-link
models were assigned to the AL and PL accordingly. The chordae structure was
generated according to statistical data on their location in human hearts [5, 7].
The primary chords were attached to the edges of the leaflets, and at least
two branched basal chords were attached to the basal parts of the leaflets. An
example of the structure is presented in Fig. 12a. Periodical displacements of
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Table 1. Averaged measurement data for the material parameters of the rheological model
(Fig. 11); ∆L is the absolute displacement of the chorda [17].

∆L [mm] Ep [kN/m] E1 [kN/m] E2 [kN/m] η1 [kN · s/m] η2 [kN · s/m]
1 0.92 ± 0.80 0.31 ± 0.25 0.28 ± 0.22 32.20 ± 23.78 1.84 ± 1.60
2 1.69 ± 1.40 0.49 ± 0.36 0.38 ± 0.27 55.84 ± 38.89 2.53 ± 1.90
3 2.50 ± 1.86 0.73 ± 0.51 0.58 ± 0.37 83.40 ± 58.61 3.75 ± 2.46
4 3.29 ± 2.11 0.97 ± 0.59 0.80 ± 0.44 109.93 ± 68.63 4.91 ± 2.61
5 4.07 ± 2.25 1.23 ± 0.71 1.11 ± 0.54 143.95 ± 94.84 6.50 ± 3.12
6 4.89 ± 2.40 1.44 ± 0.58 1.25 ± 0.53 165.31 ± 67.61 7.72 ± 3.04

a) b)

c) d)

Fig. 12. The initial sample geometry of the MV (a), the case with broken marginal chordae
(b), the virtually sewn neochordae (c), the corrected seagull defect and MV regurgitation (d).



408 G. GAIDULIS et al.

the AL and PL extracted from the US images were used for the inverse problem
solution and determination of the produced tensile forces to the critical values
compatible to the tensile modules E∗ for the human mitral valve chordae in
healthy tissues and for some unhealthy tissues resulting from diseases [18–20].
Since the E∗ values are strongly dependent on the cross-sectional area S of the
chord, the experimental values used in the study are presented in Table 2.

Table 2. The tensile modules and tensile elongation for healthy
and pathological human mitral valve chordae [18–20].

S [mm2] 0.1–0.5 0.5–1.0 1.0–2.0 2.0–3.5
E∗ [MPa] (healthy) 95 ± 20.2 80 ± 21.5 69 ± 14.3 64.8 ± 14.2
∆L∗ [%] 3.9 ± 1.9 7.5 ± 3.1 14.9 ± 4.4 19.8 ± 3.1
E∗ [MPa] (disease) 18 ± 4.1 16.2 ± 4.4 14.1 ± 2.6 13.2 ± 2.2

The following problems were modelled on the initial MV geometry (Fig. 12a):
1. The broken marginal chorda in AL, PL and in both of them (Fig. 12b).
2. Sewn four neochordae from PTFE (E = 108 Pa) at AL and/or PL margin

(Fig. 12c).
3. The central part of the basal chorda is cut to remove the so-called seag-

ull effect (AL at t = 80 ms in Fig. 12a) and substituted with a pair of
neochordae (AL in Fig. 12c).

4. MV regurgitation due to the broken marginal chordae with the virtual
assignment of the locations for neochordae by a surgeon (PL in Fig. 12c).

For each case, the system of equation (3.1), (3.8), (3.9), (3.12) was composed
for single and branched chordae. It was assumed that in the initial state (t = 0)
all the chordae were at zero stress state (∆L = 0). The obtained system of non-
linear equations was solved using Newton’s method with initial approximation
given in Sec. 3. The method demonstrated very good accuracy and fast con-
vergence. The accuracy was estimated by comparison of the numerical results
obtained with η1,2 = 0 (see Sec. 3) to the computations on equivalent systems
of linear elastic springs [21–23].

For the nonlinear viscoelastic parameters of the model, the equations were
solved at a small time interval ∆t. After computations of all the tensile forces,
the corresponding displacements were computed, and the new location of the
joints was determined. If elongation of the corresponding chorda exceeded ∆L =
1 cm, bigger values of the five material parameters were assigned to this chorda,
according to/as in Table 1. When the computed tensile force Φ

(s)
j exceeded

the corresponding E∗∆L value, the chorda was considered as broken, and the
computations were stopped.
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Some results of numerical computations are presented in Figs. 13a and 13b for
the AL and PL accordingly. The horizontal lines correspond to conventional crit-
ical forces. When the tensile forces in the chordae exceed the critical values, the
probability of the chorda rupture becomes high. The thin lines mark the average
values for the healthy valve tissues, while at the age-related degenerative pro-
cesses, some inflammatory states and other diseases lead to significant decrease
of the critical forces (thick lines in Figs. 13a,b) [18–20]. The initial geometry of
the AL is not healthy because of the seagull MV leaflet, and in the corresponding
joint point the tensile forces slightly exceed the upper critical value (curve 1 in
Fig. 13a). When one marginal chorda is broken, the stresses in the corresponding
part of the leaflet become lower, but the neighbouring chorda becomes overloaded

a)

b)

Fig. 13. Numerical results of the force distribution in the consecutive chords n = 0, . . ., 10 of
the AL; 1 – intact geometry (Fig. 12a), 2 – broken single margin chorda (Fig. 12b), 3 – branched
chorda (Fig. 12b), 4 – broken both marginal chordae (Fig. 12b), 5 – sewn four neochordae,
6 – virtual surgical correction of the seagull shape; horizontal lines correspond to conventional

critical forces for the healthy tissues (thin line) and affected (thick line).
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(curves 2 in Figs. 13a,b). When the second (branched) chorda is ruptured, the
first marginal chorda and the next healthy chorda become critically overloaded
(curves 3 in Figs. 13a,b). When four neochordae from PTFE are sewn instead of
the ruptured ones, the force distribution becomes more uniform along the margin
of the leaflet, and the distribution in the basal part is also normalized (curves
5 in Figs. 13a,b). Incision of the short segment of the branched basal chord and
the implantation, instead of it, of one or two neochordae decrease significantly
the relatively high forces produced by the short thick segment (seagull shape).
Unfortunately, when the tensile strength of the chordae is low due to diseases,
implantation of neochordae does not provide a sufficient decrease in the tensile
force distribution along the leaflets, and the risk of rupture remains high.

The computed regularities are in agreement with surgical observations and
physical laws; the tested model is in good correspondence to the structural spring
models and experimental measurements reported in the literature [15, 16]. Nev-
ertheless, implementation of the developed model and approach into the virtual
planning of surgery on the patient-specific geometry and valve dynamics into
clinical practice needs more detailed investigations. Individual scatter in the
material parameters of the viscoelastic soft tissues, the importance of the proper
rheological model and residual strains, large variations in the parameters and
geometry proper to healthy individuals and patients with different groups of dis-
eases and ages are the most important topics for further studies. Besides, in the
developed model, the generalized forces Rp produced by other factors such as
shear forces and drag, hydrostatic pressure and blood flow streams and vortices
were omitted. Their importance or insignificance must be shown which will be
done in the further studies.

6. Summary

MV is composed of nonlinear viscoelastic materials and possesses complex
geometry. The chordae attached to the margin and lower surfaces of the MV
leaflets prevent the leaflets from the displacements outside of the left ventricle
and provide unidirectional blood flow. When the chordae are overstretched, over
distended or ruptured, different types of MV insufficiency develop. MV surgery
includes among other procedures the neochordae sewn to replace the broken
ones. Locations, lengths, and the stretch of the neochordae are chosen by intu-
ition. First attempts of quantitative estimation of the outcomes of the surgery
and virtual planning on the patient-specific models were based on the 2D and
3D FEM models which are time-consuming and need special research team for
computations. Here a reasonable simple mechanical model of the MV dynam-
ics based on the 2D HUS imaging of the valve dynamics was proposed. The
leaflets in the side view are visible as smoothed polyline, while the papillary
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muscles are seen as moving points. The coordinates of the digitized structures
provided the boundary conditions for the marginal ends of the chordae fastened
to the papillary muscles and leaflets. Then the location of the internal nodes of
the chordae and the stress-strain distributions in the segments can be computed
from Newton’s second law. The problem is reduced to a set of non-linear alge-
braic equations for computations of coordinates of the internal nodes. Then the
tensile forces in the chordae were computed from the rheological laws for elastic
or viscoelastic chordae and compared to the critical values close to the ultimate
tensile strength of the chordae of given thickness and age-related degradation
level, inflammatory diseases or calcification. The model is simple and fast and
can be useful not only for preliminary in silico planning of locations and lengths
of the neochordae, but also for the real-time correcting computations during the
surgery. Before the surgery, dozens of different neochordae locations could be
computed and the best solution may be chosen. Further testing of the model is
planned on the real clinical cases when the outcomes of the surgery after at least
a year after the surgery are known.
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