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Tensegrity structures are mechanically stable because of the way in which they balance and
distribute the mechanical stress, which is not principally a result of the strength of the individ-
ual components. This category of structures has the property that, even before the application
of any external load, the members of the structure are already in tension or compression, that
is, they are prestressed. There are different methods to find the equilibrium state attained by
a tensegrity system for a given connectivity of the constituent cables and bars. In this paper,
the tensegrity tetrahedron, characteristically shaped and free-standing, i.e., with no external
loads, is investigated.
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1. Introduction

The relationship between forms and forces is one of the main topics of struc-
tural morphology. This harmonious, coexisting relationship is very strong for
systems in tensegrity state, commonly called tensegrity systems. Our present
interest concerns mainly engineering structures.
The geometrical form with which a tensegrity system is built is extremely

important to the equilibrium state of the structure. The preferred geometry
of a tensegrity system can be established numerically. Compressed bars and
tensioned cables form highly complex geometrical shapes made up of triangles,
as shown in Fig. 1. In the classic examples below, in Fig. 1a an elementary three-
bar unit or module or cell used to form a tensegrity structure is presented, and in
Fig. 1b it is an elementary four-bar tensegrity unit. This latter unit is composed
of eight nodes, four bars, and twelve cables. The compressed members are of
equal length (b) and the tension members are of equal length (l). The geometry
of the system relies on a specific ratio (b{l) based on the lengths of the bars and
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a) b)

Fig. 1. The classic examples of elementary tensegrity units.

cables, and the relative rotation (α) of the upper and lower square. Self-stress
equilibrium geometry for the four-bar tensegrity cell is represented in Fig. 2a.
The upper square composed of cables and the lower square are relatively rotated
with a 45� angle.
a) b) c)

Fig. 2. Funicular shapes of the four-bar cell: a) self-stress equilibrium geometry, b) funicular
geometry under upward forces, c) funicular geometry under downward forces.

The research of funicular shapes is fundamental when a description of mobile
structures is required. We take as an example the tensegrity cell in Fig. 2a.
If the length (b) is too small, then the system becomes unstable, yet it can reach
a funicular shape under external vertical actions exerted on the four upper nodes.
It can be pointed out that this self-stress equilibrium geometry corresponds

to the maximum value 1.553774 of the curve, which is relating the ratio (b{l) to
the relative rotation (α) of the upper and lower square, as shown in Fig. 3. Any
other lower value of the ratio (b{l) gives two geometries, which are subjected to
mechanisms. So the ratio 1.414213 characterizes the two geometries for which
funicular shapes are obvious, Fig. 2b and Fig. 2c, and corresponding to relative
rotations α � 0

� and α � 90
�.
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Fig. 3. Relationship between α and b{l with reference
to the four-bar tensegrity cell.

1.1. Space filling tetrahedron

Space-filling means that the combination of like or complementary figures in
a three-dimensional packing is continuously repeated in such a way that there
is no unoccupied space. Is it possible to subdivide a space into congruent and
disjoint tetrahedra? This problem is not trivial as it is in 2D since, unlike equi-
lateral triangles, the regular tetrahedra cannot be fitted together to fill space.
The paper [1] demonstrates in full the nature of the cube and the rhombic
dodecahedron, respectively, as being in general made up of the homogeneous
tetrahedra. Starting from here, the space-filling tetrahedron T2 is crucial to the
researchconducted in this paper.

Fig. 4. Dissection of the cube as well as the rhombic dodecahedron
into congruent and disjoint tetrahedra [5].

1.2. The Class k and Class Θ tensegrity systems

The Class k tensegrity system, according to the strictest definitions, is
a structural unit based on the use of isolated components in compression in-
side a net of continuous tension. The tensegrity systems depicted in Figs. 1,
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2a, 5a and 5b represent strictly speaking the Class k = 1, since each node is
connected to one compressive member only [2, 3]. A tensegrity system with as
many as k rigid components in contact is a Class k tensegrity system. Figure 5a
illustrates the simplest example of linear tensegrity system: one bar and one ca-
ble in tension. Other examples in relation to k ¡ 1 are shown in Figs. 5c and 5d.

a) b) c) d)

Fig. 5. Some examples of the Class k tensegrity systems: a) and b) Class k � 1,
c) Class k � 2, d) Class k � 4.

It is possible to design a separate set of cables inside the cable-bar elementary
cell and to establish a self-stress state of equilibrium [4, 5]. Each of the basic
tensegrity systems termed Class Θ possesses an external and internal set of ten-
sion components. The shape of Greek capital letter Θ (Theta) reflects two sets
of such components. This notation corresponds to Skelton’s Class k tensegrity
structure. Refer to the space-filling tetrahedron T2 from Fig. 4, the represen-
tative specimens of possible topologies of the Class k and Class Θ tensegrity
systems are shown in Fig. 6.

a) b) c) d) e)

Fig. 6. The representative specimens of possible topologies of the Class k and Class
Θ tensegrity systems based on the space-filling tetrahedron T2.

1.3. The mother, coplanar and expanded configuration

Figure 7a exemplifies a mother/initial configuration of internal nodes. The
tensegrity module, shown in Fig. 7b, is an example of coplanar configuration,
in which internal nodes occupy the appropriate faces of tetrahedral cell. As
shown in Figs. 7c and 7d, it is hypothetically possible to build up the coplanar
configuration toward a few expanded configurations.
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a) b) c) d)

Fig. 7. M-mother/initial configuration of internal nodes, C-coplanar configuration of internal
nodes, E-expanded configuration of internal nodes. Additional nodes labeled A are necessary
for the existence of currently obtained expanded configurations in the self-equilibrium state.

2. Mathematical model of the class Θ � 1 tensegrity module

Numerical form finding of the ClassΘ � 1 tensegrity tetrahedron starts from
the mother configuration, similar to the example in Figs. 6e and 8b. Consider
a space-filling tetrahedron of one edge length 2l centered at the origin of x
axis, and its second edge length 2l that is parallel to the y axis of Cartesian
system, as shown in Fig. 8a. If the Cartesian coordinates of one edge or cable
are p�l, 0, 0q and pl, 0, 0q, then its second edge or cable coordinates will be
respectively p0, �l, lq and p0, l, lq. The coordinates of the other bar ends are
also recorded in Eq. (2.1) and shown in Fig. 8.

(2.1)
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a) b)

c) d)

Fig. 8. Model of the Class Θ � 1 tensegrity tetrahedron: a) front
view of the mother configuration, b) top view of the mother configu-
ration, c) top view of model in the first extreme position for α � 0

�,
d) top view of model in the second extreme position for α � 45

�.
The value b, that is, the length each of four bars can be determined by

subtracting the coordinates of one bar end (e.g., XB1) from the coordinates
of the other end (TB1). Therefore, the length of the bar between TB1 and
XB1 is

(2.2) b � �
1

4
c2 � l2 � 1

4
pl � c cosαq2 � lc cos

�
π

4
� α

	�1{2
.

Thus, the relationship (2.2) is the function of several variables: l, c and α.
Only when the distances between TB1 and XB1, TB2, XB2, etc. achieve a maxi-
mum, then all the elements are stressed and the tensegrity system can be stable,
see Fig. 9. The quality of theoretical results depicted in Fig. 10 was confirmed
by both physical and 3D graphical models [6].
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Fig. 9. The Matlab graph bmax � fpαq for c � 0.05.

Fig. 10. Diagram of the maximal length of bars bmax (if l � 1) as a function
of the geometric parameters: either the given angle α or the given length

of internal cables c interchangeably.
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