
ENGINEERING TRANSACTIONS 
 Engng. Trans. 
 65, 1, 163–170, 2017
Polish Academy of Sciences 
 Institute of Fundamental Technological Research (IPPT PAN)

National Engineering School of Metz (ENIM) 
 Poznan University of Technology
Evaluation of Partial Factorization for Reduction

of Finite Element Matrices

Paweł JARZĘBSKI, Krzysztof WIŚNIEWSKI

Institute of Fundamental Technological Research
Polish Academy of Sciences

Pawińskiego 5B, 02-106 Warsaw, Poland
e-mail: kwisn@ippt.pan.pl

In this paper, we present the concept of Partial Factorization [1] and discuss its possible
applications to the Finite Element method. We consider: (1) reduction of the element tangent
matrix, which is particularly important for mixed/enhanced elements and (2) reduction of the
sub-domain matrices of the Domain Decomposition (DD) equation solvers run either sequen-
tially on a single machine or in parallel on a cluster of computers. We demonstrate that Partial
Factorization can be beneficial for these applications.

Key words: multi-scale models of multi-layer shells, mixed/enhanced finite elements, parallel
computing, domain decomposition, solvers.

1. Introduction

In multi-scale computations of multi-layer shells, the finite element models
can have a size of millions of degrees of freedom and must be repeated many
times e.g. when a database of material properties is built for the Design Sensitiv-
ity Analysis. Therefore, it is necessary to improve efficiency of an finite element
(FE) code, especially using concurrent capabilities of multi-core processors and
multi-machine clusters.
The minimum is to use one of the available parallel solvers, such as PAR-

DISO, MUMPS, PaStiX, HSL and others. The next step is a parallelization of
computations of the FE matrices and vectors, e.g. using OpenMP. In the third,
the so-called hybrid approach, additionally the domain decomposition (DD) is
performed, e.g. by METIS, and computations for sub-domains are scattered over
a cluster of computers, which requires, e.g. MPI.
This, however, requires several changes in the FE code and advanced compu-

tational techniques. In [2], we describe a parallelization of the loop over elements



164 P. JARZĘBSKI, K. WIŚNIEWSKI

of FEAP while in [3], a performance of the ompFEAP and the parallel solver
HSL MA86 was established for two various composite materials.
An objective of this paper is to describe possible applications of Partial

Factorization (PF) to FE computations. The PF was proposed in [1] for the
stochastic optimization problems. We shall establish performance of this tech-
nique in two other applications: (1) a reduction of the element tangent matrix,
which is particularly important for mixed/enhanced elements using a large num-
ber of additional parameters, and (2) a reduction of the sub-domain matrices
to the ones expressed in terms of the interface variables for the DD equation
solvers, run either sequentially on a single machine or in parallel on a cluster of
computers.

2. Partial factorization

2.1. Schur complement for Domain Decomposition

It is well-known that the FE method yields the system of equations Ku � f

of a banded structure. If we compute these equations using the DD method, i.e.
each sub-domain on a different node of a cluster of computers, then for each
sub-domain i (i � 1, ...n) we have

(2.1)

�
Ki BTi

Bi Ci

��
ui

uI
i

� � �
fi

f Ii

�
,

where we distinguish between the interface variables uI
i and the domain variab-

les ui. Besides, we assumed that the matrix is symmetric. The domain variables
must be eliminated within each domain, which yields

(2.2) Si u
I
i � si,

where

(2.3) Si
.� Ci �BiK

�1
i BT

i , si
.� f Ii �BiK

�1
i fi.

Note that the matrix Si is the Schur complement of Ki. Next step is performed
for all domains taken together, for which we have to assemble and solve the
system of equations for the interface variables,

(2.4) SuI � s,

where

(2.5) S
.� ņ

i�1

Si, s
.� ņ

i�1

si, uI .� ņ

i�1

uI
i.



EVALUATION OF PARTIAL FACTORIZATION. . . 165

Having obtained the interface variables uI, we compute ui for each domain
separately, which ends the solution process.
Note that computations of Si, si and ui can be performed in parallel in sub-

domains, which can significantly shorten the solution time. Most time-consuming
is computation of the Schur complement Si in sub-domains, especially of the
product K�1

i BT
i . Classically this product is obtained in two steps: (1) factoriza-

tion of Ki, and (2) one back-substitution for each column of BT. This, however,
is very inefficient and e.g. the speedup on 12 cores is only about 3, see [4]. Much
faster is the method presented in the next section.

2.2. Partial factorization and Schur complement

The LU decomposition algorithm for factorization of a matrix has acceptable
scalability on multicore machines and this feature is preserved when we use PF
to compute the Schur complement. The PF method was proposed in [1] for
the stochastic optimization problems; in the current paper we propose its other
applications.
The LU decomposition of the matrix of Eq. (2.1) can be written as follows:

(2.6)

�
Ki BT

i

Bi Ci

� � �
L11 0

L21 L22

��
U11 U12

0 U22

� � �
L11U11 L11U12

L21U11 L21U12 � L22U22

�
,

where Lij and Uij are the block factors of the lower and upper triangular parts,
respectively. Noting that L21U11 � Bi and L11U12 � BT

i , we can calculate L21

and U12 first. Then, L21U12 � BiU
�1
11 L

�1
11 B

T
i � BiK

�1
i BTi by L11U11 � Ki.

We note that

(2.7) Ci � L21U12 � Ci �BiK
�1
i BTi � Si,

i.e. the Schur complement of Eq. (2.3). Note that we do not need to compute
L22 and U22 to obtain the Schur complement, which justifies the term “partial”
factorization.

3. Reduction of element’s matrix

3.1. Set of equations for problems with additional variables

Mixed/enhanced finite elements involve additional local parameters which
must be condensed out to reduce the size of a tangent element matrix to the
standard one. The number of element parameters can be quite large, sometimes
exceeding the number of nodal variables associated with the element, and one
of the approaches is to group and condense out all parameters together, which
amounts to computation of the Schur complement.



166 P. JARZĘBSKI, K. WIŚNIEWSKI

For the considered class of finite elements, the governing functional F de-
pends on the nodal displacements (and rotational parameters) designated as
uI and the elemental multipliers q. In general, q are the Lagrange multipli-
ers (including the multipliers of stress modes) and the multipliers of enhancing
kinematical modes, used in the enhanced strain methods, such as: Incompatible
Displacements or EADG or EAS method.
For kinematically non-linear problems, the stationarity condition of F puI ,qq

yields a system of equilibrium equations for an element, rupuI ,qq � 0 and
rqpuI ,qq � 0. The linearized (Newton) form of these equations is as follows:

(3.1)

�
K L

LT Kqq

��
∆uI

∆q

� � ��
ru

rq

�
,

where K .� Bru{BuI , L
.� Bru{Bq and Kqq

.� Brq{Bq. Note that K and Kqq are

symmetric and, in general, indefinite.
To eliminate the multipliers ∆q at the element level and to reduce the size

of a tangent element’s matrix to the standard one, defined by the number of
nodes on the element and dofs/node, we calculate ∆q from the second equation
and use it in the first one, which yields

(3.2)
K�∆uI � �r�,

where K� � K� LK�1
qq L

T and r� � ru � LK�1
qq rq.

Comparing to Eq. (2.3), we see that the reduced (or condensed) matrix K� is
defined as the Schur complement of Kqq. Hence, the PF method described in
Subsec. 2.2 can be applied to speed up the above condensation. Below, we test
and compare its performance for three types of finite elements.

3.2. Numerical results

Tests were performed using only 1 core of a multi-core machine (2 processors
Xeon X5650 2.66 GHz with 6 cores each, running under Linux). This is in accord
with parallelization of a loop over elements in FEAP, see [2] for details, by which
each core processes a different finite element.
The stiffness matrices used in computations were obtained for the central

(irregular) elements of the patch tests described in [5]. The computations were
repeated 1 million times for each matrix. The speedups are presented in Table 1,
where the best results for each matrix are boldfaced.
Solver and method. For reference, we used the scheme of Eq. (3.2) and the

LUDCMP routine of Numerical Recipes [6], which performs the LU factorization



EVALUATION OF PARTIAL FACTORIZATION. . . 167

Table 1. Speedup for particular solvers and methods.

Solver Method
Shell elements Solid-shell elements 3D elements

EAS10 HW35 HW43 EAS10 HW29 HW47 EADG12 EAS30 HW60

DSYTRF 1RHS 0.26 0.48 0.68 0.30 0.56 0.60 0.29 0.45 0.75

MA64 1RHS 0.57 1.02 1.36 0.72 1.37 1.51 0.84 1.23 1.74

DSYTRF mRHS 0.97 1.72 2.06 1.04 1.93 1.82 1.12 1.49 2.20

MA64 mRHS 0.62 1.04 1.37 0.77 1.39 1.82 0.90 1.26 1.75

DSYTRF ownPF 1.27 2.47 3.37 1.37 2.64 2.52 1.57 1.86 2.41

MA64 PF 0.58 1.41 1.91 0.72 1.90 2.10 0.85 1.49 2.31

Matrix density [%] 91.20 100.00 58.70 98.40 48.20 29.20 40.60 22.20 13.70

Reference time [s] 6.77 49.96 129.08 10.46 75.19 108.19 13.34 53.88 192.54

using the Crout method; the times obtained are designated “Reference time”
in Table 1. The speedup is computed as a quotient timemethod{timeref . Besides,
we tested two routines based on the Gauss elimination: DSYTRF of LAPACK
[7] and MA64 of HSL [8]. To obtain K�1

qq L
T, the back-substitution routine is

called in two ways: either for each column of LT separately (“1RHS”), or for all
columns of LT together (“mRHS”). Besides, “ownPF” indicates our modification
of the code to perform PF. (Note that the PF is not suitable for the Crout
method.)
Finite elements. Three types of elements were tested: 4-node shells, 8-node

solid-shells and 8-node 3D elements. Their formulations are designated by: HW
– based on the Hu-Washizu functional and enhanced for shell and solid-shell ele-
ments [9, 10], EAS – based on the potential energy with the Enhanced Assumed
Strain, and EADG – based on the potential energy with Enhanced Assumed Dis-
placement Gradient. The number of additional parameters follows these letters.
The results presented in Table 1 indicate that PF is beneficial for all elements
and that the solver “DSYTRF” and the method “ownPF” provide the best
speedup.

4. Domain decomposition solvers using PF

4.1. Sequential solver for single machine

The parallel algorithm for solving a system of equations of Subsec. 2 can also
be performed sequentially on a single machine. This reduces the memory usage,
thus allowing to compute bigger examples.
We divide the domain into two sub-domains. The memory usage is reduced

because the fill-in of the sub-domain matrix of Eq. (2.1) is less than half of that



168 P. JARZĘBSKI, K. WIŚNIEWSKI

for the whole matrix. However, after factorization of the first sub-domain ma-
trix we have to deallocate the memory to compute the second sub-domain
matrix. Hence, we need to factorize this matrix once more after solving Eq. (2.4),
which increases the time of computation. We used the above method with two
solvers: either Pardiso or modMA86, which is the HSL MA86 solver with our
implementation of PF.
To test this method we computed a linear example of an elastic cube, loaded

by uniform unit forces on the top face and fixed at the bottom face. A mesh of
N �N �N 3D 8-node standard elements was used with N � 64. The results
presented in Table 2 indicate that the new method saves around 32–38% memory
but is about 37–40% slower than the standard one. We see that each of the
solvers tested has its merits.

Table 2. Memory and time usage by a sequential DD solver.

Solver
Memory [GB] Time [s]

Standard New Change [%] Standard New Change [%]

Pardiso 14.16 8.71 �38 210.98 288.90 �37
modMA86 14.47 9.91 �32 156.07 218.83 �40

4.2. Parallel solver for cluster of computers

The parallel algorithm for solving a system of equations of Sec. 2 is naturally
suited for parallel solution on a cluster of computers. In each sub-domain we use
the modMA86 solver, which is the HSL MA86 solver with our implementation
of PF. Each sub-domain is computed by different computational node of a clus-
ter. On each node we use multithreaded version of modMA86 solver with use
of 12 threads. The equation for interfaces (Eq. (2.4)) is solved using the solver
for dense matrices MA64 of HSL. Additional special treatment is necessary for
the cases of 4 and 8 nodes; more details on our implementation can be found
in [4].
Our solver is compared to the distributed version of WSMP solver of IBM,

see [11], by computations on 2, 4, and 8 computational nodes of the type char-
acterized in Subsec. 4.1. The speedup is shown according to run on 1 node
with 12 threads. Numerical results for the cube example (the same as in Sub-
sec. 4.1) are presented in Figs. 1a and 1b. We note that our solver compares
favorably with WSMP (it uses also 14% less memory). An additional speedup is
provided by the OMP parallelization of the MA86 solver which, on the 12-core
machine, is about 9.1. Hence, the total speedup provided by our cluster solver
is about 24.4.



EVALUATION OF PARTIAL FACTORIZATION. . . 169

a) b)

Fig. 1. Comparison of time (a) and speedup (b) of cluster solvers.

5. Conclusions

We applied the PF technique to two problems involving the matrix reduction
and for both the use of this technique has proven beneficial. For the first problem
(Sec. 3), it saves time and the best speedup is provided when it is combined with
the solver “DSYTRF”. For the second problem (Sec. 4), it either saves 32–38%
of memory, when run on a single machine, or provides the total speedup 24.4
on the cluster.

References

1. Petra C.G. et al., An augmented incomplete factorization approach for computing the
Schur complement in stochastic optimization, SIAM J. Sci. Comput., 36(2): C139–C162,
2014.

2. Jarzębski P., Wiśniewski K., Taylor R.L., On paralelization of the loop over elements
in FEAP, Computational Mechanics, 56(1): 77–86, 2015.

3. Jarzębski P., Wiśniewski K., Performance of the parallel FEAP in calculations of
effective material properties using RVE, [in:] Advances in Mechanics, Kleiber M. et al.
[Eds.], Taylor & Francis, London, pp. 241–244, 2016.

4. Jarzębski P., Wiśniewski K., Application of partial factorization for domain decompo-
sition solver, In preparation, 2016.

5. MacNeal R.H., Harder R.L., A proposed standard set of problems to test finite element
accuracy, Finite Element in Analysis and Design, 1: 3–20, 1985.

6. Press W.H. et al., Numerical Recipes in Fortran 77, Cambridge Univeristy Press, 1999.

7. Anderson E. et al., LAPACK Users’ Guide, SIAM, Philadelphia, 1999.

8. HSL 2013, A collection of Fortran codes for large scale scientific computation,
http://www.hsl.rl.ac.uk/.



170 P. JARZĘBSKI, K. WIŚNIEWSKI

9. Wiśniewski K., Finite Rotation Shells. Basic Equations and Finite Elements for Reissner
Kinematics, Springer, 2010.

10. Wiśniewski K., Turska E., Four-node mixed Hu-Washizu shell element with drilling
rotation, Int. J. Num. Meth. Engng., 90(4): 506–536, 2012.

11. Gupta A.,WSMP: Watson Sparse Matrix Package, IBM Research Report, Watson, 2015.

Received October 24, 2016; accepted version January 26, 2017.


