
ENGINEERING TRANSACTIONS 
 Engng. Trans. 
 65, 1, 3–9, 2017
Polish Academy of Sciences 
 Institute of Fundamental Technological Research (IPPT PAN)

National Engineering School of Metz (ENIM) 
 Poznan University of Technology
On Shape and Material Optimization of Isotropic Bodies

Sławomir CZARNECKI, Tomasz LEWIŃSKI, Paweł WAWRUCH

Warsaw University of Technology

Armii Ludowej 16, 00-637 Warsaw, Poland
e-mail: T.Lewinski@il.pw.edu.pl

This paper deals with the free material design and its two constrained versions constructed
by imposing isotropy with (i) independent bulk and shear moduli, and (ii) fixed Poisson’s ratio.
In the latter case, the Young modulus is the only design variable. The moduli are viewed as
non-negative, thus allowing for the appearance of void domains within the design domain. The
paper shows that all these methods reduce to one stress-based problem in which the norm
involved reflects the type of the constraints imposed.
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1. Introduction

The free material design (FMD) method put forward originally in Bendsøe
et al. [1] leads to a simultaneous designing of the anisotropy and the material
placement. In this method, the minimized merit function is the global compli-
ance, while the design variable is the field of Hooke’s tensor C, subject to the
cost condition expressed by the integral of the trace of tensor C over the de-
sign domain. The tensor C is subject to symmetry required in elasticity and
to the conditions of positive semi-definiteness. A natural starting point for this
theory is the spectral representation of the Hooke tensors, as proposed by Rych-
lewski [10]. The FMD method delivers a tool for cutting out a material domain
from a design domain, thus linking the material and shape optimization. The
material domain turns out to be the effective domain of the solution to the
auxiliary problem:

min

$&%»
Ω

dρ pτq | τ statically admissible stress fields

,.- pPq.
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Problem (P) has been derived in [4, 6], while its mathematical background is
described by Bouchitté and Buttazzo in [2] concerning the optimal mass dis-
tribution. It becomes apparent that problem (P) should be, in general, expressed
in terms of the theory of Radon measures. In a regular case, the integrand in
(P) has the form dρpτq � pτ � τq1{2dx, where dx is the Lebesgue measure.
It turns out that problem (P) also appears in other versions of the FMD

method, in which additional symmetry conditions are imposed on tensor C.
In the present paper, two versions of the FMD method are discussed: (i) the
isotropic material design (IMD) method of designing an isotropic material of
independent varying bulk and shear moduli, and (ii) the Young modulus design
(YMD) method, in which Poisson’s ratio is fixed while Young’s modulus is the
design variable. The unknown moduli are viewed as non-negative scalar fields. In
both the methods, the minimum compliance problem reduces to the problems of
the form similar to (P), with different integrands. Yet, in each case the integrand
is expressed by a norm of the stress field. Only this property decides that the
problem (P), in all its forms, determines the shape of a body as the effective
domain (or a support, if it is a measure) of the solution. In this manner, we
prove that the FMD, IMD, YMD methods (as well as the cubic material design
method (CMD) proposed in [8]) solve two following problems simultaneously:
optimal shape design and material optimal layout.
A conventional notation is applied- the design domain in Rn is denoted

by Ω; in the case of n � 3, the domain is parameterized by the Cartesian systempx1, x2, x3q with the orthogonal basis ei, i � 1, 2, 3. The set of second rank
symmetric tensors is denoted by E2

s . The set of fourth rank tensors satisfying
the symmetries Cijkl � Cklij, Cijkl � Cjikl is denoted by E4

s . The trace of C
is defined by: trC � Cijij. The identity tensor in E4

s is represented by I �
1
2
pδikδjl � δilδjkq eibej bekbel. The scalar product of σ, ε P E2

s is defined by
σ�ε � σij εij , where repetition of indices imply summation. The Euclidean norm
of σ P E2

s is defined by }σ} � pσ � σq1{2. Comma implies partial differentiation,
e.g, B p�q {Bxi � p�q, i. The symmetric part of the gradient of the vector field v is
denoted by εij pvq � pνi,j � νj,iq {2.

2. Free material design (FMD) revisited

Consider a non-homogeneous anisotropic linearly elastic body, occupying
a given domain Ω, supported on the part Γ2 of the boundary and subject to
tractions T on the remaining part of the boundary Γ1. The deformed configu-
ration is given by the displacement field u. The compliance is expressed as

(2.1) ℘ � f puq, f pvq � »
Γ1

T � v,
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where v � pv1, v2, v3q represents a virtual displacement field. The compliance
will be treated as a functional of argument C � pCijklq – a tensor field of elastic
moduli on the design domain. We assume that the mentioned symmetry prop-
erties are satisfied together with the assumption of positive semi-definiteness,
denoted by C ¥ 0. Let us define the function:

(2.2) jpηq � 1

2
η � pCηq , η P E2

s

and its Fenchel transform

(2.3) j�pτq � maxtτ � η� jpηq ��η P E2
s u.

The tensor field C satisfying the point-wise conditions: C P E4
s , C ¥ 0, and the

global condition

(2.4)
»
Ω

tr C dx � Λ

is the main design variable. The set of statically admissible stresses τ � pτijq is
denoted by ΣT pΩq. The compliance of the body of a given distribution of elastic
moduli is expressed by

(2.5) ℘ pCq � inf

$&%»
Ω

j� pτq |τ P ΣT pΩq,.- .

We consider the optimum design problem

(2.6) Y � inft℘ pCq ��Cpxq P E4
s ,Cpxq ¥ 0 a.e. in Ω, C satisfies (2.4)u.

One can prove that

(2.7) Y � Z2

Λ
, Z � inf

$&%»
Ω

}τ} |τ P ΣT pΩq,.- pPFMDq.
The problem dual to (PFMD) reads

(2.8) Z � suptf pvq | kinematically admissible v,}ε pvpxqq} ¤ 1, a.e. in Ωu pP�FMDq.
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Upon putting the above problems in a rigorous form, see [2], one can prove
their well-posedness. The solution τ̆ to problem (PFMD) determines the optimal
moduli of elasticity:

(2.9) C̆ijkl � λ1ωijωkl, ωijpxq � τ̆ijpxq}τ̆pxq} , λ1pxq � Λ
}τ̆pxq}»
Ω

}τ̆} .
Thus λ1 is the only non-zero eigenvalue of tensor C̆. Despite this degeneracy, the
elasticity problem of the body with optimal elastic moduli (2.9) is well-posed:
the stress field σ̆ transmitting the given tractions to the given support exists,
its uniqueness being still not proved. Moreover, this field is one of minimizers of
problem (PFMD), or one can write σ̆ � τ̆.

3. Isotropic material design (IMD)

Consider now the isotropic designs. The unknown tensor C is assumed in
the form

(3.1) C � nkΛ1 � 2µΛ2, Λ1 � 1

n
δijδklei b ej b ek b el, Λ2 � I�Λ1.

n being the dimension of the problem. The bulk modulus kpxq ¥ 0 and the shear
modulus µpxq ¥ 0 are independent design variables. The minimum compliance
problem has the form (2.6), where C is given by (3.1) and minimization takes
over both the moduli subject to the cost condition (2.4) with trC � 3k � 10µ

for n � 3 and trC � 2k � 4µ for n � 2. The formula (2.7)1 still holds, see [3,
7]. The counterpart of (2.7)2 assumes the form

(3.2) Z � inf

$&%»
Ω

}τ}� 1?
n
,
?
3n�4

	 |τ P ΣT pΩq,.- pPIMDq,
where

(3.3) }τ}pα,βq � α |trτ| � β }devτ} .
Assume that n � 3. Having solved problem (3.2), one can find the optimal
moduli by the rules:

(3.4) 3k̆pxq � Λ»
Ω

}τ̆}� 1?
3
,
?
5
	 |tr τ̆pxq|?

3
, 10µ̆pxq � Λ

?
5»

Ω

}τ̆}� 1?
3
,
?
5
	 }det τ̆pxq} .

The material is necessary in the subdomains where both the moduli presented
above vanish.
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4. Young’s modulus design (YMD)

Assume that the distribution of Poisson’s ratio is given. Consider the problem
of optimum design of Young’s modulus to minimize the compliance with the cost
condition (2.4), in which tr C � aE for n � 3, here a � p6�9νqp1�νq�1p1�2νq�1.
The formula (2.7)1 holds, with a new problem (PYMD) expressed by (2.7)2, where
the norm involved has now the following form:

(4.1) }τ}YMD � �
6� 9ν

3 p1� νq ptrτq2 � 6� 9ν

1� 2ν
}dev τ}2
1{2

.

Let τ̆ be a solution to problem (2.7)2 with the norm (4.1). The optimal Young’s
modulus is given by

(4.2) Ĕpxq � 1

a

Λ»
Ω

}τ̆}YMD

}τ̆pxq}YMD .

The stress field in the optimal body coincides with one of the stress fields being
solutions to (2.7)2.

5. Example and final remarks

The example concerns the YMD optimal in-plane design. We consider
L-shaped plate, see Fig. 1a (h1 � h2 � 2l). The plate is fixed along its up-
per horizontal boundary. The right vertical segment is subjected to a con-
stant tangent traction of intensity q. Poisson’s ratio ν is constant and equal
to 0.3. The problem (PYMD) is solved numerically by the method elaborated

a) b) c)

Fig. 1. a) L-shaped domain problem: geometry, load and boundary conditions, b) FEM mesh,
c) the YMD prediction – scatter plot visualization of optimal Young’s modulus Ĕ.
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in [4, 6] for the FMD approach; a non-uniform finite element mesh is shown
in Fig. 1b. The optimal Young modulus Ĕ assumes the extreme values at the
re-entrant corner and the smallest values around the left lower corner and be-
tween vertical strips close to the support, see Fig. 1c. Optimal compliance cal-
culated by formula (2.7), with Z corresponding to the 2D counterpart of the
norm (4.1), is equal to Y � 19.55 q2l

Λ
|Ω|. The YMD prediction Ĕ compares

favorably with those available in the literature, see [9] concerning the FMD
and thickness optimization problems, for the case where no local stress con-
straints are imposed. The material domain is in fact cut out from the design
domain.
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