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This work deals with the inverse homogenization problem: for given two well-ordered elastic
and isotropic materials characterized by the bulk and shear moduli (κ1, µ1), (κ12, µ2) and the
volume fraction ρ of the second material reconstructing the layout of the most second-rank
orthogonal laminates within a hexagonal 2D periodicity cell Y corresponding to the predefined
values of moduli (κ�, µ�) of the effective isotropic composite. The used algorithm follows from
imposing the finite element (FE) approximation on the solution to the basic cell problems of
the homogenization theory [7] along with periodicity assumptions. The material properties of
each element are described by three independent parameters. Thus, the formulated inverse
problem is solved numerically by the gradient method. The adopted cell structure, i.e., the
hexagonal cell with the rotational symmetry of 120� angle guarantees the isotropic effective
properties of the composite, and thus the optimization problem is greatly simplified. Isotropic
constraints do not appear in the formulated optimization problem.
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1. Introduction

The aim of this paper is to show the microstructures of isotropic composites,
corresponding to points in the plane: effective bulk modulus κ versus effective
shear modulus µ, of extremal properties characterized by the contour of the
Cherkaev-Gibiansky (CG) domain [3]. The CG domain has a form of curvilinear
polygon, see Fig. 1.
The microstructures corresponding to the interior of the CG polygon can be

of an arbitrary rank in the meaning of the hierarchical homogenization. More-
over, it is well-known that the rank-1 microstructures cannot reach the regions
close to the vertices and boundary lines of the CG. These bounds are attainable
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Fig. 1. The juxtaposition of the given (κα, µα) points 
 and Gρ-closure of isotropic materials
(shaded area) for ρ � 0.5 bounded by the CG (black).

by the second-rank microstructures [11]. The specific challenge is to build such
“extremal” composites that reach the points lying on the boundaries of the CG
area.
A new inverse homogenization technique is developed to construct these

extremal microstructures of isotropic effective moduli. The constructed layouts
correspond to the points lying very close to the contour of the CG domain.
On the other hand, the present paper delivers a method of enhancing the

isotropic material designs (cf. [4]) with microstructures reflecting the optimal
isotropic properties.

2. Homogenization of periodic media

We consider the periodic composites the RVE’s of which are identified with
the periodicity cells Y . Tessellation of Y gives a structure of the material at the
macro level. The effective properties of periodic composites are determined by
the solutions to the basic cell problems of the homogenization theory. To suffi-
ciently obtain accurate results, the mesh of Y must be properly constructed [1]
and the conditions of periodicity must be properly modeled. The basic cell prob-
lems are solved by assuming the FE approximation of displacements u � Nq

and strains ε � Bq by nodal displacements q and the appropriate shape func-
tions N within each element Ωk. Here B � DN, where D is the matrix of the
differential operators of the considered problem. Let |
 | be the volume of 
. The
effective constitutive matrix is expressed by

(2.1) EH � xEy � �
HK�1HT

� |Y |�1 ,

with K being the FE stiffness matrix, H – matrix of the vectors, i.e., self-
equilibrated load cases, both obtained by the FE aggregation of an element
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matrices Kk, Hk, and xEy – averaged constitutive matrix. These are calculated
by the following formulas:xEy � |Y |�1

»
Y

EdY � |Y |�1

ķ

Ek |Ωk|,
Ke pEkq � Kk � »

Ωk

BT
kEkBkdΩk, He pEkq � Hk � »

Ωk

EkBkdΩk.

Note that a three-column (for 2D) matrix HT is uniquely defined by the distri-
bution of the material in Y . Periodicity condition can be met by using a simple
trick of FE. The opposite edges must be identically meshed. For such mesh,
the same degrees of freedom should be assigned for the nodes on corresponding
opposite edges.

3. Inverse homogenization

The inverse homogenization problems state the questions on the optimal lay-
out of several materials in given proportions within domain Y . Here, optimal
means such a layout that gives assumed homogenized properties E� of the peri-
odic composite. As such, the problem can be treated as a topology optimization
problem: to minimize the gap between the given E� and the calculated EH. The
conventional process of the optimization is carried out usually on the rectan-
gle Y . The cell is meshed uniformly into n finite-elements Ωk (k � 1, ..., n). In
the case of the two materials of moduli E1 and E2 and their volume fractions
expressed by 1�ρ, 0   ρ   1, for each element a variable ρk is assigned a number
such that:

(3.1) ρk � #
0, Ωk P E1

1, Ωk P E2

and
n°

k�1

ρk � nρ.

By creating a few configurations of ρ � tρku, i.e., layouts of materials, one
can try to get the expected result described by the assumed E�. The problem
defined in this way is a difficult, binary programming problem with a large num-
ber of variables ρ. An accurate representation of the structure requires a large
number n of elements, and produces at most n!{pm!pn � mq!q possible config-
urations to check, where m � ρn. Such a pure 0-1-element-wise optimization
problem can be solved by using the so-called ‘hard-kill’ methods such as evolu-
tionary structural optimization (ESO) or bidirectional ESO (BESO). However,
the above-mentioned methods do not guarantee achieving the global or local
optimum.
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For large n (� 10 000), the optimization problem must be relaxed to be effec-
tively solved. The relaxation allows variation ρk P x0, 1y and makes the material
characteristics dependent on “pseudo-density” variables ρk. The final proper so-
lution must be characterized only by ρk � t0, 1u. Here, the parameters ρk are
the only decision variables in each finite element. The introduction of a contin-
uous variable ρk allows determining the gradient of the objective function and
using the efficient gradient methods to search for the minimum. The relaxed
formulation admits mixing the given materials in some proportion (infinitely
fine mixtures). This requires proper calculating of effective properties Epρkq for
intermediate values ρk usually by adopting the so-called material interpolation
scheme, e.g., SIMP [2], RAMP [12], GRAMP [5] or the proposed by the author:
HSρ [10], all for an artificial isotropic material (in fact these models are not
exactly single-parameter and they depend on an additional coefficient p). This
interpolation is crucial for relaxed topology optimization problems. For a wrong
approximation Epρkq the obtained result may lie very far from the global opti-
mum.
Instead of artificial isotropic one-parameter models, the more complicated

multi-parameter (
) microstructures (MpM) can be adopted as underlying struc-
tures. Calculating Ekp
q for some of them can be done exactly (leading to lami-
nates) or by the homogenization approach. On the other hand, one can prepare
a multi-parameter interpolation scheme. The MpM approach causes great lim-
itations – the resulting solution by definition is limited to a narrow class of
the assumed microstructures. Main complications caused by MpM are the addi-
tional design variables required to describe the structure of composites, i.e., the
number and the angles of orientation of layers, the diameters and orientations
of inclusions, etc. Moreover, the number of parameters depends on the selected
type of the underlying structure.
One of many periodic composites are materials known as laminates, in fact:

in-plane laminates. The first- rank laminate is a heterogeneous material that
is composed of periodically repeating layers of materials of any constitutive
properties. For such a constructed laminate the constitutive matrix EI is given
by Lurie-Cherkaev-Fiodorov formula, see [8]

(3.2) HI � xHy � p1� ρq ρ∆HQ
�
QTHsaQ

��1
QT∆H,

where H � HαβEα b Eβ is the matrix representation of Hooke’s tensor (α, β �
1, 2, 3), Hsa � p1 � ρqH2 � ρH1, ∆H � pH2 � H1q, and (for the orthogonal
versors e1, e2, and the basis Eα � eα b eα, E3 � ?

2pe1 b e2 � e2 b e1q{2)
H � ��� E11 E12

?
2E13

E22

?
2E23

sym. 2E33

���,
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Q � ?
2

2

��� ?
2 cos2 pαq � sin p2αq?
2 sin2 pαq sin p2αq
sin p2αq ?

2 cos p2αq ���.
Here α is the angle of the direction of lamination (for details see [6]).
The material thus obtained – the first rank laminate EI, can be used for the

construction of the laminate of the second rank of moduli EII, calculated again
by formula (3.2).
This study assumed the laminate of two components with orthogonal layers

of lamination, i.e., α � t90�, 0�u. Such a laminate of the second rank can be
described by three parameters (ρ, η, ϕ) as shown in Fig. 2, (ρ, η P x0, 1y). The
effective properties EII of the defined laminate are calculated by repetitive appli-
cation of Eq. (3.2). The first lamination, for α � 90�, determines the properties
of the first rank laminate EI consisting of p1� ρq{ρI and p1� ηqρ{ρI fractions of
materials of moduli E1(κ1, µ1q and E2(κ2, µ2q, respectively, where ρI � 1� ηρ.
The next one (for α � 0�) contains 1 � ηρ fraction of EI and ηρ fraction of
E2. Then, the resulting constitutive matrix EII is rotated by the angle ϕ that
defines the orientation of the material in the global coordination system of the
analyzed cell Y . Such model of the pre-homogenized orthotropic material allows
for the description of the isotropic material (for ρ � 0 is EII � E1, while for
ρ � 1 is EII � E2q, a first rank laminate (for η � 1 or for η � 0 and ρ ¡ 0) and
a second-rank laminate.

Fig. 2. Scheme of the second order orthogonal laminate.

4. Results

In the present work, in order to achieve the boundary of the CG domain,
a variety of isotropic composites are constructed based on EII underlying lami-
nates. Equation (3.2) is used to determine the homogenized constitutive values
described by (ρk, ηk, ϕk) for each element within the hexagonal cell Y . The
minimized objective function P pρk, ηk, ϕkq for the studied inverse problem is
chosen (due to a special choice of the isotropic hexagonal cell) as below:

(4.1) P pρk, ηk, ϕkq � �
κ� � κ

κ� 
2 ��
µ� � µ

µ� 
2

.
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The formulated optimization problem, although strongly nonlinear, is sol-
ved numerically by the gradient method. At the starting point, the triplets
(ρk, ηk, ϕk) are randomly selected (here, for all the presented cases – they are
the same), yet satisfying the isoperimetric condition corresponding to a given
ρ � 0.5. The effective isotropic moduli for the analyzed microstructure and the
gradient are computed according to the homogenization algorithm (2.1) using
the FE techniques along with periodicity assumptions. The material data (κ, µ)
adopted are (0.0357, 0.0192) and (0.7143, 0.3846), respectively. The obtained re-
sults are presented below. In Fig. 3, grey lines show the bounds of the “extreme”
first rank microstructures, which were created in a similar manner but for 3200
decision variables each (single-parameter elements) by using the HSρ-isotropic
interpolation scheme [9]. The results, shown by black dots, were recently ob-
tained by using EII microstructures. The topology of the cell Y for some points
with the values of the objective function (4.1), is presented in Fig. 4.

Fig. 3. CG bounds and 
 – obtained (κH, µH) for the proposed E
II microstructures

with Æ – assumed (κ�, µ�) (connected by dotted lines respectively).
a) 9.01 e–3 b) 2.17 e–3 c) 1.13 e–3 d) 3.72 e–4

Fig. 4. Examples of the obtained Y cells for EII underlying microstructures in each element.

5. Final remarks

This paper is aimed at finding (at most) the rank-3 subclass of the isotropic
composites of effective moduli achieving the CG bounds. The structures built on
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one-parameter model of an isotropic material do not reach these limits. Using
a simple tri-parameter model of orthogonal laminates gives much better results
that lie much closer to the boundaries. Moreover, this results in a significant
reduction in the number of the decision variables involved in the process. The
number of the decision variables for the proposed model is nearly 10 times
smaller than for first rank microstructures, which significantly reduces the time
of computation. Exact isotropic result is ensured by the use of hexagonal cells
of periodicity with rotational symmetry of an angle of 120 degree.
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