
ENGINEERING TRANSACTIONS • Engng. Trans. • 65, 3, 483–498, 2017
Polish Academy of Sciences • Institute of Fundamental Technological Research (IPPT PAN)

National Engineering School of Metz (ENIM) • Poznan University of Technology

Research Paper

Delamination Fracture Analyses of Linear-Elastic
Functionally Graded Beams

Victor Iliev RIZOV

Department of Technical Mechanics
University of Architecture, Civil Engineering and Geodesy

1 Chr. Smirnensky blvd., 1046 Sofia, Bulgaria
e-mail: V RIZOV FHE@UACG.BG

An analytical approach for investigation of delamination cracks in three-dimensional func-
tionally graded linear-elastic beams was developed. Beams which are functionally graded along
their width, height and length were analyzed. The fracture was studied in terms of the strain
energy release rate. Beams loaded by a combination of bending moments and an axial force
were considered. The approach was applied to determine the strain energy release rate for a de-
lamination crack in a functionally graded beam of rectangular cross-section loaded in eccentric
tension. An additional analysis was performed by using the beam strain energy for verification.
The effects of material gradient and crack length on the delamination were evaluated.
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1. Introduction

Piecewise nature of laminated composites leads very often to failures from
interfacial stress concentrations [1–3]. A perspective way for overcoming of this
disadvantage is the concept for functionally graded materials [4]. The compo-
sition of material constituents of a functionally graded material varies contin-
uously in structure without boundary surfaces and sudden changes of material
properties. Thus, interfaces between material constituents are avoided. Besides,
by spatial tailoring of material properties during manufacturing, optimum per-
formance of functionally graded structural members and components to external
loads and influences can be achieved.

Structural integrity of members and components made of functionally graded
materials is strongly dependent on their fracture behaviour. Crack initiation and
growth deteriorates significantly the structural capacity and functionality and
may lead in some cases to catastrophic failure. That is why fracture mechan-
ics of functionally graded materials has received considerable attention from
international academic community [5–10].
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Various studies on the fracture behaviour of functionally graded materials
have been reviewed in [7]. Cracks oriented both parallel and perpendicular to
the material gradient direction have been analyzed assuming linear-elastic be-
haviour of the material. Fracture of one-dimensional functionally graded ma-
terials under both static and cyclic fatigue loading conditions has been consi-
dered.

The strength of structures composed by one-dimensional functionally graded
materials has been predicted by applying linear-elastic fracture mechanics [8].
Fracture behaviour of functionally graded plates under tension and beams under
three-point bending has been analyzed. It has been shown that the analytical
model developed yields reliable results for the strength of functionally graded
structures containing re-entrant corners.

The compliance approach for analyzing fracture in one-dimensional func-
tionally graded beam under three-point bending has been applied [9]. One
equivalent homogeneous beam of variable depth for cracked functionally graded
linear-elastic beam has been suggested. It has been found that the equiva-
lent beam captures the compliance characteristics of the functionally graded
beam with high accuracy. It has been concluded that the method is particularly
suitable for cracked functionally graded components loaded by concentrated
loads.

Yet there are crack problems which have not been analyzed sufficiently. One
of these problems is the delamination fracture in three-dimensional functionally
graded beams. Therefore, the main aim of present paper was to develop an
analysis of delamination in beams which are functionally graded along their
width, height and length. The delaminaton was studied in terms of the strain
energy release rate by applying linear-elastic fracture mechanics.

2. Analysis of the strain energy release rate

A functionally graded beam with a delamination crack located arbitrary
along the beam height (the lower and upper crack arm thicknesses are h1 and
h2, respectively) is under consideration in the present paper (it should be noted
that the present study was motivated also by the fact that functionally graded
materials can be built up layer by layer [4], which is a premise for appearance
of delamination cracks between layers). The beam is under a combination of
bending moments and an axial force. The beam height is 2h. The geometry of
beam cross-section is symmetric with respect to z axis. A beam portion with the
crack front is shown schematically in Fig. 1. The beam width at the delamination
crack level is bs. The material of beam is functionally graded along x, y and z
(the coordinate axes, x, y and z, are shown in Fig. 1). Therefore, the modulus
of elasticity, E, is a function of x, y and z, i.e. E = E(x, y, z).
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Fig. 1. A beam portion with the delamination crack front
(1 – front position before the increase of crack, 2 – front position after the increase of crak).

The delamination fracture was studied in terms of the strain energy release
rate. By assuming a small increase, ∆a, of the crack length, the strain energy
release rate, G, for linear-elastic materials can be written as [11]

(2.1) G =
∆U

bs∆a
,

where the change of strain energy, ∆U , can be defined as

(2.2) ∆U = Ua − Ub.

In Eq. (2.2), Ub and Ua are the strain energies before and after the increase
of crack area, respectively. The increase of crack area can be written as

(2.3) ∆Aa = bs∆a,

where ∆a is a small increase of the crack length.
The strain energy before the increase of crack can be calculated as

(2.4) Ub =

˚

(V )

u0dV ,

where

(2.5) dV = ∆adA.

In Eq. (2.5), A is the beam cross-section area. The strain energy density, u0,
that participates in Eq. (2.4) can be written as

(2.6) u0 =
σ2

2E
,
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where σ is the longitudinal normal stress. The beam cross-section under a com-
bination of bending moments, My and Mz, and an axial force, N , before the
increase of crack is shown in Fig. 2. It was assumed that the modulus of elas-
ticity, E, varies linearly along the width and height of beam. Besides, E varies
continuously along the beam length. It was also assumed that ET , EL and EK
are the values of modulus of elasticity in points T , L and K (Fig. 2). The dis-
tribution of modulus of elasticity in the beam cross-section was expressed in
a function of y3 and z3 through ET , EL and EK by using the following equa-
tion [12] of a plane that passes via three points of coordinates (ET , y3T , z3T ),
(EL, y3L, z3L) and (EK , y3K , z3K):

(2.7)

∣∣∣∣∣∣∣∣∣
E y3 z3 1

ET y3T z3T 1

EL y3L z3L 1

EK y3K z3K 1

∣∣∣∣∣∣∣∣∣ = 0.

Fig. 2. Beam cross-section before the increase of crack.

It should be noted that ET , EL and EK vary along the beam length, because
besides along the beam height and width, the material is functionally graded
also along the beam length.

The stress, σ, that is needed in order to calculate the strain energy density,
u0, was obtained by the Hooke’s law

(2.8) σ = Eε,

where ε is the strain. The modulus of elasticity, E, is found by Eq. (2.7). It should
be noted that shear stresses which arise in the delamination front area are ne-
glected since the present study is based entirely on the classical beam theory
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similarly to strain energy release rate analyses of delaminated beams performed
by other authors [11, 13].

The strain, ε, was analyzed assuming validity of the Bernoulli’s hypothesis
for plane sections, since the span to height ratio of beams considered is large.
It should be mentioned that the Bernoulli’s hypothesis has been widely used
when analysing fracture in functionally graded beams [8, 9]. Concerning the
application of Bernoulli’s hypothesis in the present study, it can also be noted
that due to the fact that the beam is under a combination of bending and axial
loading (Fig. 2), the only non-zero strain is the longitudinal strain, ε. Thus,
according to the small strain compatibility equations, ε is distributed linearly in
beam cross-section. Therefore, in the beam cross-section TLK (Fig. 2) the strain,
ε, was expressed in a function of y3 and z3 by using the strains, εT , εL and εK ,
in points T , L and K, respectively. For this purpose, the following equation of
a plane that passes though points of coordinates (εT , y3T , z3T ), (εL, y3L, z3L)
and (εK , y3K , z3K) was applied:

(2.9)

∣∣∣∣∣∣∣∣∣
ε y3 z3 1

εT y3T z3T 1

εL y3L z3L 1

εK y3K z3K 1

∣∣∣∣∣∣∣∣∣ = 0.

The following equations for equilibrium of the beam cross-section (Fig. 2) were
used in order to obtain the strains, εT , εL and εK :

N =

¨

(A)

σdA,(2.10)

My =

¨

(A)

σz3dA,(2.11)

Mz =

¨

(A)

σy3dA,(2.12)

where N , My and Mz are the axial force and the bending moments for the y3
and z3 axis, respectively (Fig. 2). In Eqs. (2.10), (2.11) and (2.12) the stress,
σ, is calculated by the Hooke’s law, E and ε are determined by (2.7) and (2.9),
respectively. The Eqs. (2.10), (2.11) and (2.12) should be solved with respect
to εT , εL and εK for a particular form of the beam cross-section. In this way,
one can determine the strain distribution in the beam cross-section before the
increase of crack. Then the stress determined by (2.8) has to be substituted in
(2.6) in order to obtain the strain energy density that is used to calculate Ub
by (2.4).
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The beam cross-section after the increase of crack is shown schematically in
Fig. 3. The lower and upper crack arm heights are h1 and h2, respectively. The
strain energy, Ua, after the increase of crack was written as

(2.13) Ua = Ua1 + Ua2 ,

where Ua1 and Ua2 are the strain energies in the lower and upper crack arm,
respectively.

Fig. 3. Beam cross-section after the increase of crack.

The strain energy, Ua1 , in the lower crack arm was determined by Eq. (2.4).
For this purpose, V, u0 and dV were replaced, respectively, with V1, u01 and

(2.14) dV1 = ∆adA1,

where u01 is the strain energy density in the lower crack arm, dA1 is shown
in Fig. 3 (A1 is the area of lower crack arm cross-section). Besides, z3 and y3
was replaced, respectively, with z1 and y1 in (2.7), (2.9), (2.11) and (2.12). Also,
y3T , z3T , y3L, z3L, y3K and z3K were replaced, respectively, with y1S1 , z1S1 , y1L1 ,
z1L1 , y1K and z1K in (2.7) and (2.9). In formulae (2.10), (2.11) and (2.12) the
quantities N , My, Mz and A were replaced, respectively, with N1, My1 , Mz1

and A1.
Formula (2.4) was used also to calculate the strain energy, Ua2 , in the upper

crack arm after the increase of crack (Fig. 3). For this purpose, V , u0 and
dV were replaced, respectively, with V2, u02 and dV2 = ∆adA2 (u02 is the
strain energy density in the upper crack arm). In Eqs. (2.7), (2.9), (2.11) and
(2.12), the z3 and y3 coordinates were replaced with z2 and y2, respectively. The
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coordinates, y3T , z3T , y3L, z3L, y3K and z3K , were replaced, respectively, with
y2S2 , z2S2 , y2L2 , z2L2 , y2T and z2T in (2.7) and (2.9). Also, N , My, Mz, z3 and
A were replaced, respectively, with N2, My2 , Mz2 , z2 and A2 in formulae (2.10),
(2.11) and (2.12) (A2 is the area of upper crack arm cross-section). Further, the
cross-sectional bending moments, My2 and Mz2 , and the axial force, N2, in the
upper crack arm were expressed in functions of My, Mz, N and My1 , Mz1 and
N1 by considering the equilibrium of beam cross-section (Figs. 2 and 3)

N2 = N −N1,(2.15)

My2 = My −My1 +N(hC2 − hC3)−N1(hC2 − hC1),(2.16)

Mz2 = M −Mz1 .(2.17)

Finally, by substituting of (2.2)–(2.5), (2.13) and (2.14) in (2.1), we derived

(2.18) G =
1

bS

¨
(A1)

u01dA1 +

¨

(A2)

u02dA2 −
¨

(A)

u0dA

.
3. Analysis of the strain energy release rate in a functionally

graded beam loaded in eccentric tension

The analysis of strain energy release rate developed in Sec. 2 of the present
paper was applied to study the strain energy release rate in the functionally
graded beam shown schematically in Fig. 4. There is a delamination crack of
length, a, located in the beam mid-plane. The beam is loaded by a longitudinal
force, F , applied at the free end of lower crack arm (Fig. 4). Thus, the upper
crack arm is free of stresses. The beam cross-section is a rectangle of width, b, and
height, 2h. The beam length is l. The material is functionally graded along the
beam length, width and height. In the beam cross-section, TLK, that is located
ahead of the crack front the modulus of elasticity (Fig. 5) varies according to
Eq. (2.7). Along the beam length, the moduli of elasticity, ET , EL and EK , vary
according to the following cubic laws:

ET (x) = ET0 +
ETC − ET0

l3
x3,(3.1)

EL(x) = EL0 +
ELC

− EL0

l3
x3,(3.2)

EK(x) = EK0 +
EKC

− EK0

l3
x3,(3.3)

where

(3.4) 0 ≤ x ≤ l.
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Fig. 4. A functionally graded beam configuration loaded in eccentric tension.

Fig. 5. The beam cross-section ahead of the crack front.
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In Eqs. (3.1), (3.2) and (3.3), ET0 , EL0 and EK0 are, respectively, the values
of ET , EL and EK in the free end of beam. The values of ET , EL and EK in
the clamped end of beam are, respectively, ETC , ELC

and EKC
. The x-axis is

shown in Fig. 4.
By substituting of

(3.5)
y3T = −b/2, z3T = −h, y3L = b/2, z3L = −h,

y3K = b/2 and z3K = h

in (2.7), we derived

(3.6) E = q1y3 + q2z3 + q3,

where

q1 =
1

b
(EL − ET ) ,(3.7)

q2 =
1

2h
(EK − EL) ,(3.8)

q3 =
1

2
(EK + ET ) .(3.9)

It should be specified that in (3.7), (3.8) and (3.9), the moduli, ET , EL and
EK , were calculated by substituting x = a in (3.1), (3.2) and (3.3).

The distribution of strains in beam cross-section, TLK, was obtained by
substituting of (3.6) in (2.9)

(3.10) ε = r1y3 + r2z3 + r3,

where

r1 =
1

b
(εL − εT ) ,(3.11)

r2 =
1

2h
(εK − εL) ,(3.12)

r3 =
1

2
(εK + εT ) .(3.13)

The equilibrium Eqs. (2.10), (2.11) and (2.12) were re-written for the beam
cross-section ahead of the crack front (Fig. 5) as
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N =

hˆ

−h


b
2ˆ

− b
2

σdy3

 dz3,(3.14)

My3 =

hˆ

−h


b
2ˆ

− b
2

σz3dy3

 dz3,(3.15)

Mz3 =

hˆ

−h


b
2ˆ

− b
2

σy3dy3

 dz3,(3.16)

where (Fig. 5)

N = F,(3.17)

My3 = F
h

2
,(3.18)

Mz3 = 0.(3.19)

After substituting of (2.8), (3.6) and (3.10) in (3.14), (3.16) and (3.17) and
solving the equations obtained with respect to r1, r2 and r3, we derived

r1 = − 6q1q3N − 6q1q2My3

12bhq33 − b3hq21q3 − 4bh3q22q3
,(3.20)

r2 =
3My3

2h3bq3
− 6q2q3N − 6q22My3

12hbq33 − hb3q21q3 − 4h3bq22q3
,(3.21)

r3 =
6q3N − 6q2My3

12q23bh− q21b3h− 4q22h
3b
.(3.22)

The distribution of strains in the beam cross-section ahead of the crack front
can be obtained by substituting of (3.20), (3.21) and (3.22) in (3.10). It should
be mentioned that by substituting of ET = EL = EK = E in (3.7)–(3.10),
(3.20), (3.21) and (3.22), we derived

(3.23) ε =
F

2bhE
+

3F

4bh2E
z3,

which is exact match of the formula [14] for strains in a homogeneous beam of
cross-section, b×2h, loaded in eccentric tension by a force, F , at eccentricity, h/2.

The stresses distribution that is needed to obtain the strain energy density,
u0, by (2.6) can be found by substituting of (3.6) and (3.10) in (2.8).
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The cross-section, S1L1K, of lower crack arm behind the crack front is shown
in Fig. 6. The strains distribution in cross-section, S1L1K, was found in the
following way. First, formula (3.6) was re-written as

(3.24) E = q1Ly1 + q2Lz1 + q3L,

where

q1L =
1

b
(EL1 − ES1) ,(3.25)

q2L =
1

h
(EK − EL1) ,(3.26)

q3L =
1

2
(EK + ES1) .(3.27)

Fig. 6. The lower crack arm cross-section behind the crack front.

Axes, y1 and z1, are shown in Fig. 6. In Eqs. (3.7), (3.8) and (3.9) EL1 and
ES1 are the moduli of elasticity in points S1 and L1, respectively (Fig. 6). The
modulus of elasticity, ES1 , was calculated by substituting y3 = −b/2 and z3 = 0
in (3.6). Likewise, y3 = b/2 and z3 = 0 were substituted in (3.6) in order to
calculate the modulus of elasticity, EL1 . Formula (3.10) was re-written as

(3.28) ε = r1Ly1 + r2Lz1 + r3L,

where r1L, r2L and r3L where determined by (3.20), (3.21) and (3.22), respec-
tively. For this purpose, My3 = 0 was substituted in (3.20), (3.21) and (3.22).
Besides, h, q1, q2 and q3 were replaced with h/2, q1L, q2L and q3L, respectively.
The stress that is needed to calculate the strain energy density, u01, in the
lower crack arm was derived by substituting of (3.24) and (3.28) in the Hooke’s
law (2.8).
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In order to determine the strain energy release rate in the functionally graded
beam configuration shown in Fig. 4, formula (2.18) was re-written as

(3.29) G =
1

b


h
2ˆ

−h
2

b
2ˆ

− b
2

u01dy1dz1 −
hˆ

−h

b
2ˆ

− b
2

u0dy3dz3

.
In (3.29), it was taken into account that

(3.30) bS = b

for the beam under consideration (Fig. 4). Besides, u02 = 0 was substituted in
(2.18), since the upper crack arm is free of stresses.

Finally, by substituting of u0 and u01 in (3.29), we derived the following
formula for the strain energy release rate:

(3.31) G =
1

12
r1Lr3Lq1Lb

2h+
1

12
r1Lr3Lq2Lh

3 +
1

24
r21Lq3Lb

2h+
1

24
r22Lq3Lh

3

+
1

2
r23Lq3Lh−

1

6
r1r3q1b

2h− 2

3
r1r3q2h

3 − 1

12
r21q3b

2h− 1

3
r22q3h

3 − r23q3h.

At ET = EL = EK = E, formula (3.30) calculates

(3.32) G =
F 2

16Eb2h
.

It should be noted that (3.32) matches exactly the formula for strain energy
release rate when the beam in Fig. 4 is homogeneous [13].

An additional analysis of the strain energy release rate was performed by
considering the beam strain energy in order to verify expression (3.31). For
linear-elastic materials, the strain energy release rate can be derived by differ-
entiating the strain energy, U , with respect to the crack area, Aa, [15]:

(3.33) G =
dU

dAa
,

where

(3.34) dAa = bda.

In Eq. (3.34), da is an elementary increase of the crack length. By combining of
(3.33) and (3.34), the strain energy release rate was written as

(3.35) G =
dU

bda
.
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The beam strain energy, U , was derived by integrating of the strain energy
density in the lower crack arm (the strain energy in the upper crack arm is zero)
and in the un-cracked beam portion

(3.36) U =

h
2ˆ

−h
2

b
2ˆ

− b
2

aˆ

0

u01dxdy1dz1 +

hˆ

−h

b
2ˆ

− b
2

lˆ

a

u0dxdy3d3.

The x-axis is shown in Fig. 4.
By combining of Eqs. (3.35) and (3.36), we derived formula for the strain en-

ergy release rate that is exact match of (3.31). This fact verifies the strain energy
release rate analysis developed in the present paper by using the assumptions
of the classical beam theory.

It should be noted that the strain energy release rate can be calculated
relatively simply by (3.35) for the beam in Fig. 4. However, for more complicated
structures and loading conditions, formula (2.18) has decisive advantages over
(3.35). For instance, according to (2.18), the strain energy release rate can be
determined by analyzing the strain energy in the beam cross-sections ahead and
behind the crack front only, while formula (3.35) requires analysis of the strain
energy in the whole beam structure.

The influence of material gradient on the delamination fracture behaviour of
beam shown in Fig. 4 was evaluated. For this purpose, the strain energy release
rate was calculated by using formula (3.31). The results obtained were presented
in non-dimensional form by formula, GN = G/(EK0b). In these calculations, it
was assumed that b = 0.02 m, h = 0.003 m and F = 100 N. The material
gradient along the beam height was characterized by EL0/EK0 ratio. It should
be specified that EK0 was kept constant. Thus, EL0 was varied in order to
generate various EL0/EK0 ratios. The strain energy release rate was plotted
in non-dimensional form against EL0/EK0 ratio for three ET0/EK0 ratios at
EKC

/EK0 = 2, ELC
/EL0 = 2, ETC/ET0 = 2 and a/l = 0.5 in Fig. 7. The curves

in Fig. 7 indicate that the strain energy release rate decreases with increasing
of EL0/EK0 and ET0/EK0 ratios. This finding was attributed to the increase of
beam stiffness.

The effect of delamination crack length on the fracture behaviour was eval-
uated too. The delamination crack length was characterized by a/l ratio in the
parametric analyses. The material gradient along the beam width was char-
acterized by ET0/EL0 ratio. The strain energy release rate was presented in
non-dimensional form as a function of a/l ratio for three ET0/EL0 ratios at
EL0/EK0 = 0.5, ELC

/EL0 = 0.5, ETC/ET0 = 0.5 and EKC
/EK0 = 0.5 in Fig. 8.

It can be observed in Fig. 8 that the strain energy release rate decreases with
increasing of ET0/EL0 ratio (this is due to the increase of beam stiffness). Con-
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Fig. 7. The strain energy release rate in non-dimensional form plotted
against EL0/EK0 ratio for three ET0/EK0 ratios.

Fig. 8. The strain energy release rate in non-dimensional form presented
as a function of a/l ratio for three ET0/EL0 ratios.

cerning the effect of crack length, the curves in Fig. 8 indicate that the strain
energy release rate increases with increasing of a/l ratio. This finding can be
explained with the decrease of modulus of elasticity in the beam cross-section
in which the crack front is located with increasing of the crack length, because
the modulus of elasticity in the clamped end of beam is lower than in the free
end of beam.

4. Conclusions

Delamination fracture in three-dimensional functionally graded beams was
studied analytically. Methods of linear-elastic fracture mechanics were applied.



DELAMINATION FRACTURE ANALYSES. . . 497

Fracture behaviour was studied in terms of the strain energy release rate by us-
ing the classical beam theory. Beams which are functionally graded along their
width, height and length were analyzed. It was assumed that the modulus of
elasticity varies linearly along the beam cross-section. The modulus of elasticity
may vary arbitrary along the beam length. The delamination crack was located
arbitrary along the beam height. Beams were loaded by a combination of bend-
ing moments and an axial force. The common analysis developed was applied to
study the strain energy release rate for a delamination crack in a functionally
graded beam configuration of a rectangular cross-section loaded in eccentric ten-
sion. In order to verify the solution derived, an additional analysis of the strain
energy release rate was performed by using the beam strain energy. A paramet-
ric analysis was carried-out in order to evaluate the effects of material gradient
and crack length on the fracture behaviour. It was found that the strain energy
release rate decreases with increasing of EL0/EK0 , ET0/EK0 and ET0/EL0 ratios.
Also, the analysis revealed that strain energy release rate increases with increas-
ing of crack length when the modulus of elasticity in beam clamped end is lower
than in the beam free end. It should be mentioned that the analysis developed
in the present paper can be applied to study the strain energy release rate in
delaminated beam configurations loaded by bending moments and axial forces,
such as the double cantilever beam loaded with uneven bending moments, the
crack lap shear beam and others.
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