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In this paper, the influence of rotation on axisymmetric waves of a piezoelectric rod coated
with a thin film is studied using the constitutive equation of linear theory of elasticity and piezo-
electricity. Potential functions are introduced to uncouple the equations of motion in radial
and axial directions. The surface area of the rod is coated by a perfectly conducting material.
The frequency equations are obtained for longitudinal and flexural modes of vibration and
are studied numerically for PZT-4 ceramics. The computed non-dimensional frequency, phase
velocity, relative frequency shift, electromechanical coupling and electric displacement are pre-
sented in the form of dispersion curves. This type of study is important in the construction of
rotating sensors and gyroscope.
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1. Introduction

The piezoelectric materials are the important structural components in de-
vices such as pressure transducers and accelerometers. Initially, piezoelectric
materials were used as resonators for ultrasound sources in sonar devices. The
piezoelectric materials such as barium titanate (BiTiO3) are fabricated by the ad-
vancement of piezoelectricity in the engineering field. Coated piezoelectric poly-
mers are used in a variety of compositions and geometrical shapes for a large
variety of applications from transducers in acoustics, ultrasonics and hydrophone
applications to resonators in bandpass filters, power supplies, delay lines, med-
ical scans and some industrial non-destructive testing instruments. The rota-
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tional effect will attenuate the medium and energy transfer. Also, the thin
film coating and rotation can greatly influence the performance of the wave
medium.

The wave propagation in elastic solid was discussed extensively by Graff [1]
and Achenbach [2]. A detailed account of the historical development of the
problem was given by Meeker and Meitzler [3]. Wave propagation in trans-
versely isotropic cylinders was developed by Farhang Honarvar et al. [4].
They verified the consistency of this model with the physics of the problem and
a systematic solution to the corresponding equations was developed. Wang and
Hao [5] developed modeling of guided wave propagation with a spectral element
with application in structural engineering. Studies by Tiersten [6] should be
mentioned among the notable early contributions to the topic of the mechanics of
piezoelectric solids. The author developed modeling for small vibrations of piezo-
electric bodies by the linear theory of piezoelectricity through Maxwell’s equa-
tions. In piezoelectricity, the quasistatic electric field is coupled to the dynamic
mechanical motion. Electroelastic governing equations of piezoelectric materials
were presented by Parton and Kudryavtsev [7]. Paul and Venkatesan [8]
studied the wave propagation in infinite piezoelectric solid cylinders of arbi-
trary cross-section using the Fourier expansion collocation method, formulated
by Nagaya [9]. They used series solutions in which some boundary conditions
were exactly satisfied, term-by-term. The remaining boundary conditions were
satisfied in a mean-square sense. Ebenezer and Ramesh [10] analyzed axially
polarized piezoelectric cylinders with arbitrary boundary conditions on the flat
surfaces using the Bessel series. In their paper, the series expressions for dis-
placements, potential, and stress converge rapidly and the result was validated
with a finite element program. Later Botta and Cerri [11] extended this ap-
proach and compared their results with those in which the effect of variable
electric potential was not considered. Kim and Lee [12] studied piezoelectric
cylindrical transducers with radial polarization and compared their results with
those obtained experimentally and numerically by the finite element method.
Selvamani [13] developed modeling of elastic waves in a fluid-loaded and im-
mersed piezoelectric circular fiber. He concluded that the effect of inner and
outer fluid, as well as the anisotropy of the material with a thickness on the
various considered wave characteristics, is more significant and dominant in the
flexural modes of vibration. Rao and Rao [14] studied the nonlocal critical ve-
locities of fluid conveying clamped-pinned single-walled carbon nanotubes sub-
jected to an axial magnetic field. They concluded that higher the values of the
non-local parameter the greater are the effects of reducing the stability of the
system.

Abd-Alla and Bayones [15] discussed the effect of rotation, magnetic field,
thermal relaxation time and pressure on the wave propagation in a generalized
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viscoelastic medium under the influence of time-harmonic source. Wauer [16]
studied the propagation of waves in conducting piezoelectric solid for the case
when the entire medium rotates with a uniform angular velocity. He concluded
that the rotational speed influences the wave characteristics significantly. Roy-
choudhuri and Mukhopadhyay [17] studied the effect of rotation and re-
laxation times on plane waves in generalized thermo-visco-elasticity. Sergiu
et al. [18] studied the energy dissipation and critical speed of granular flow
in a rotating cylinder, and they found that the coefficient of friction has the
greatest significance on the centrifuging speed. The one-dimensional analysis for
magneto-thermo-mechanical response in a functionally graded annular variable-
thickness rotating disk was presented by Bayat et al. [19]. Selvamani and Pon-
nusamy [20] investigated the effect of rotation in an axisymmetric vibration of
a transversely isotropic solid bar immersed in an inviscid fluid. Wave propagation
in a generalized piezothermoelastic rotating bar of circular cross-section was dis-
cussed by Selvamani and Ponnusamy [21] using Bessel functions. A long-wave
model for the surface elastic wave in a coated half-space was investigated by Dai
et al. [22].Wang [23] discussed the axi-symmetric wave propagation in a cylinder
coated with a piezoelectric layer. Research on its application for time-delay de-
vices was investigated by Sun and Cheng [24]. A theoretical model of the coated
structure was investigated by Minagawa [25] to predict attenuation character-
istics for finding suitable modes for a guided wave inspection Viscous film flows
coating the interior of a tube were discussed by Camassa and Ogrosky [26]
for thin-film and long-wave models. They concluded the important contribution
of cylindrical geometry to the behavior of the film flow. Barshinger [27] in-
vestigated the guided waves in pipes with viscoelastic coatings. He found that
the presence of attenuative, viscoelastic coatings causes significant problems for
developing a guided-wave, nondestructive inspection of coated pipes. Piezoelec-
tric BaTiO3 thin film nano-generator on plastic substrates was constructed by
Park et al. [28]. Their results show that a nanogenerator can be used to power
flexible displays by means of mechanical agitations for future touchable display
technologies.

In this paper, the effect of rotation on axisymmetric waves of piezoelectric rod
coated with a thin film is studied using the constitutive equation of linear theory
of elasticity and piezoelectricity. Potential functions are introduced to uncouple
the equations of motion. The surface area of the rod is coated by a perfectly
conducting material. The frequency equations are obtained for longitudinal and
flexural modes of vibration and are studied numerically for PZT-4 ceramics. The
non-dimensional frequency, phase velocity, relative frequency shift, electrome-
chanical coupling and electric displacement are investigated and presented as
dispersion curves.
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2. Modeling of the problem

A homogeneous transversely isotropic piezoelectric circular rod of infinite
length coated by a thin film is considered for this problem. The medium is as-
sumed to be rotating with uniform angular velocity Ω. The displacement equa-
tion of motion has the additional terms with a time-dependent centripetal ac-
celeration Ω× (Ω× u) and 2(Ω× u,t), where u = (u, 0, w) is the displacement
vector and Ω = (0,Ω, 0) is the angular velocity. The governing equations of ax-
isymmetric motion in the absence of body forces with the coordinates (r, z) are
given as

(2.1)

∂

∂r
σrr +

∂

∂z
σrz +

σrr
r

+ ρ(Ω× (Ω× u) + 2(Ω× u,t))r = ρ
∂2ur
∂t2

,

∂

∂r
σrz +

∂

∂z
σzz +

σrz
r

+ ρ(Ω× (Ω× u) + 2(Ω× u,t))z = ρ
∂2uz
∂t2

.

The Gauss electric conduction equation without free charge is taken as

(2.2)
1

r

∂

∂r
(rDr) +

∂Dz

∂r
= 0.

The coupled form of stress equations in axisymmetric directions are given as

(2.3)

σrr = c11err + c12eθθ + c13ezz − e31Ez,

σzz = c13err + c13eθθ + c33ezz − e33Ez,

σrz = 2c44erz − e15Er,

(2.4)
Dr = e15erz + ε11Er,

Dz = e31 (err + eθθ) + e33ezz + ε33Ez,

where σrr, σθθ, σzz, σrθ, σθz, σrz are the stress components, err, eθθ, ezz, erθ,
eθz, erz are the strain components, c11, c12, c13, c33, c44, c66 = (c11 − c12)/2 are
the elastic constants, e31, e15, e33 are the piezoelectric constants, ε11, ε33 are the
dielectric constants, and ρ is the mass density.

The strain eij and the displacements are related as

(2.5)

err = ur,r, eθθ = r−1 (ur + uθ,θ) , ezz = uz,z,

erθ = uθ,r + r−1 (ur,θ − uθ) , ezθ =
(
uθ,z + r−1uz,θ

)
,

erz = uz,r + ur,z,
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where ur, uθ, uz are the displacements along radial, circumferential and axial
directions, respectively. The comma in the subscripts denotes the partial differ-
entiation with respect to the variables. Substituting Eqs. (2.3), (2.4) and (2.5)
in Eqs. (2.1) and (2.2), results in the following three-dimensional equations of
motion and electric conduction equation:

c11
(
urr,r + r−1ur,r − r−2ur

)
+ c44ur,zz + (c44 + c13)uz,rz

+ (e31 + e15)V,rz + ρ
(
Ω2u+ 2Ωw,t

)
= ρur,tt,

c44
(
uz,rr + r−1uz,r

)
+ r−1 (c44 + c13) (ur,z) + (c44 + c13)ur,rz(2.6)

+ c33uz,zz + e33V,zz + e15
(
V,rr + r−1V,r

)
+ ρ

(
Ω2u+ 2Ωw,t

)
= ρuz,tt,

e15
(
uz,rr + r−1uz,r

)
+ (e31 + e15)

(
ur,zr + r−1ur,z

)
+ e33uz,zz − ε33V,zz − ε11

(
V,rr + r−1V,r

)
= 0.

3. Solutions of the field equation

Equation (2.6) represents the coupled partial differential equations of the two
displacement components. To obtain the propagation of free harmonic electro-
elastic waves in the piezoelectric circular rod, we assume the solutions of the
displacement components to be expressed in terms of derivatives of potentials
from Paul and Venkatesan [8]

(3.1)

ur (r, z, t) = (φ,r) ei(kz+ωt),

uz (r, z, t) =

(
i

a

)
W ei(kz+ωt),

V (r, z, t) = iV ei(kz+ωt),

Er (r, z, t) = −E,rei(kz+ωt),

Ez (r, z, t) = E,zei(kz+ωt),

where i =
√
−1, k is the wave number, ω is the angular frequency, φ(r), W (r)

are the displacement potentials, V (r, θ) is the electric potentials, and a is the
geometrical parameter of the rod.

By introducing the dimensionless quantities such as x = r/a, ζ = ka, $2 =
ρω2a2/c44, c11 = c11/c44, c13 = c13/c44, c33 = c33/c44, c66 = c66/c44ε11 =

ε11c44/e
2
33, e31 = e31/e33, e15 = e15/e33, Γ = ρΩ2R2

2+λ
and substituting Eq. (3.1)

in Eq. (2.6), we can get the following non-dimensional form of equations:
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(3.2)

(
c11∇2 +

(
$2 + Γ − ζ2

))
φ− ζ (1 + c13)W − ζ (e31 + e15)V = 0,

ζ (1 + c13)∇2φ+
(
∇2 +

(
$2 + Γ − ζ2 c33

))
W +

(
e15∇2 − ζ2

)
V = 0,

ζ (e31 + e15)∇2φ+
(
e15∇2 − ζ2

)
W +

(
ζ2ε33 − ε11∇2

)
V = 0,

where

(3.3) ∇2 =
∂2

∂x2
+ x−1

∂

∂x
+ x−2

∂2

∂θ2
.

Equation (3.2) can be rewritten in the following determinant form:

(3.4)

∣∣∣∣∣∣∣∣∣
a∗ −ζ (1 + c13) −ζ (e31 + e15)

ζ (1 + c13)∇2 b∗
(
e15∇2 − ζ2

)
ζ (e31 + e15)∇2

(
e15∇2 − ζ2

) (
ζ2ε33 − ε11∇2

)
∣∣∣∣∣∣∣∣∣ (φ,W, V ) = 0,

where
a∗ =

(
c11∇2 +

(
$2 + Γ− ζ2

))
,

b∗ =
(
∇2 +

(
$2 + Γ− ζ2c33

))
.

Evaluating the determinant given in Eq. (3.4), we obtain the following dif-
ferential equation:

(3.5)
(
P∇6 +Q∇4 +R∇2 + S

)
(φ,W, V ) = 0,

where

P = c11
(
e215 + ε11

)
,

Q =
[
(1 + c11) ε11 + e215

]
$2 +

{
2 (e31 + e15) c13e15 − (1 + ε11c33) c11

+ c213ε11 + 2c13ε11 − 2e15c11 + 2e213

}
ς2,

R = ε11$
4 − [(1 + c13) ε11 + (1 + c11) + (e31 + e15) + 2e15] ς

2$2

+ {c11 (1 + c33ε33)−
[
(e31 + e15)

2 + ε11

]
− 2e31 (1 + c13)− c13ε33 (c33 + c13) + 2e15}ς4,

S = −
{

(1 + c33) ς
6 − [2 (1 + c33) ε33 + 1] ς4$2 + ε33ς

2$4
}
.
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Solving Eq. (3.5), we get the solutions for a piezoelectric circular rod as

(3.6)

φ =

3∑
i=1

AiJn (αiax) cosnθ, W =

3∑
i=1

aiAiJn (αiax) cosnθ,

V =

3∑
i=1

biAiJn (αiax) cosnθ,

where (αia)2 > 0 (i = 1, 2, 3) are the roots of the algebraic equation

(3.7) A (αia)6 −B (αia)4 + C (αia)2 +D = 0.

The Bessel function Jn is used when the roots (αia)2 (i = 1, 2, 3) are real
or complex and the modified Bessel function In is used when the roots (αia)2

(i = 1, 2, 3) are imaginary. If (α4a)2 < 0, the Bessel function Jn is replaced by
the modified Bessel function In.

The constants ai, bi defined in Eq. (3.6) can be calculated from the following
equations:

(3.8) (1 + c13) ςai + (e31 + e15) ςbi = −
(
c11 (αia)2 −$2 − Γ + ς2

)
,

(3.9)
(

(αia)2−$2 − Γ + ς2c33

)
ai+

(
e15 (αia)2 + ς2

)
bi = − (c13 + 1) ς (αia)2 .

4. Boundary conditions and frequency equations

In this problem, the free axisymmetric vibration of the transversely isotropic
piezoelectric rotating rod of circular cross-section coated with the thin film is
considered. For the coated surface, the mechanical boundary conditions can be
written as

σrj = −δjb 2µ′h′
[(

3λ′ + 2µ′

λ′ + 2µ′

)
(ur)a,ab + (ur)b,aa

]
+ 2h′ρ′ (ür)j

and the shorted electrical boundary condition is

(4.1) V = 0,

where λ′, µ′, ρ′ and h′ are Lame’s constants, density, and the thickness of the
coated material, respectively, δjb is the Kronecker delta function in which a, b
takes the value of θ and z, and j takes r, θ, and z. In order to get the axisymmetric
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waves a, b can take only z. Then, the transformed boundary conditions along an
axisymmetric direction are as follows:

(4.2)

σrr = 2h′ρ′ür,

σrz = −2h′µ′G2W,zz + 2h′ρ′Ẅ ,

V = 0 at r = a,

where G2 =
1+C′12
C′11

.
Substituting the solutions given in Eqs. (3.6), (3.9) in the boundary condition

Eq. (4.2), we obtain a system of linear algebraic equations as follows:

(4.3) [B] {X} = {0} ,

where [B] is a 3× 3 matrix of unknown wave amplitudes, and {X} is an 3× 1
column vector of the unknown amplitude coefficients B1, B2, B3. The solution
of Eq. (4.2) is nontrivial when the determinant of the coefficient of the wave
amplitudes {X} vanishes, that is,

(4.4) |B| = 0.

The components of |B| are obtained as

B1i = 2c66

{
n (n− 1)− c11 (αia)2 − ς (c13ai + e31bi)

}
Jn (αia)

+ 2c66 (αia) Jn+1 (αia) , i = 1, 2,

B13 = 2c66n {(n− 1) Jn (α3a)− (α3a) Jn+1 (α3a)} ,

B14 = 2 (α4a)
[(
ρ′h′

/
aρ (ca)2 − c66

)]
Jn (α4a) ,

B2i = 2n {(n− 1) Jn (αia) + (αia) Jn+1 (αia)} , i = 1, 2,

B23 =
{[

(α3a)2 − 2n (n− 1)
]
Jn (α3a)− 2 (α3a) Jn+1 (α3a)

}
,

B24 = 2 (α4a)
[(
ρ′h′

/
aρ (ca)2 − c66

)]
Jn (α4a) ,

B3i = ((ς + ai) + e15bi) {nJn (αia)− (αia) Jn+1 (αia)} , i = 1, 2,

B33 = nςJn (α3a) ,

B34 = 0.
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4.1. Relative frequency shift

Relative frequency shift plays an important role in the construction of rotat-
ing gyroscope, acoustic sensors and actuators. The frequency shift of the wave
due to the rotation is defined as ∆$ = $(Ω)−$(0). Ω is the angular rotation,
and the relative frequency shift (RFS) is defined by

(4.5) RFS =

∣∣∣∣∆$$
∣∣∣∣ =

∣∣∣∣$(Ω)−$(0)

$(0)

∣∣∣∣ ,
where $(0) is the frequency of the waves in the absence of rotation.

4.2. Electromechanical coupling

The electromechanical coupling (π2) for a cylindrical rod is important for
alteration of structural responses through applied electric fields in the design of
sensors and surface acoustic damping wave filters. The electromechanical cou-
pling is defined as

(4.6) π2 =

∣∣∣∣Ψe − ΨfΨe

∣∣∣∣ ,
where Ψe and Ψf are the phase velocities of the wave under electrically shorted
and charge-free boundary conditions at the surface of the rod.

5. Numerical results and investigations

The frequency equation given in Eq. (4.4) is transcendental in nature with
unknown frequency and wave number. The solutions of the frequency equation
are obtained numerically by fixing the wave number. The material chosen for
the numerical calculation is PZT-4 ceramics coated with a gold material. The
material properties of PZT-4 and gold are taken from Berlincourt et al. [29].
The material constants are as follows:

c11 = 13.9 · 1010 N ·m−2, c12 = 7.78 · 1010 N ·m−2,

c13 = 7.43 · 1010 N ·m−2, c33 = 11.5 · 1010 N ·m−2,

c44 = 2.56 · 1010 N ·m−2, c66 = 3.06 · 1010 N ·m−2,

e31 = −5.2 C ·m−2, e33 = 15.1 C ·m−2,

e15 = 12.7 C ·m−2, ε11 = 6.46 · 10−9 C2 ·N−1 ·m−2,

ε33 = 5.62 · 10−9 C2 ·N−1 ·m−2, ρ = 7500 kg ·m−2.
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For the gold material ρ′ = 19.283 g · cm−3, λ′ = 1.63 · 1010 N ·m−2, µ′ =
0.42 · 1010 N ·m−2.

In the following dispersion curves, we discuss the results of non-dimensional
frequency, wave number and electric displacement for longitudinal and flexural
modes. The notation used in the figures, namely Lm, Fsm, and FAsm respec-
tively denote the longitudinal mode, symmetric flexural mode and antisymmetric
flexural mode. The first and second modes are represented by 1 and 2.

The influence of rotation is presented in the variation of non-dimensional
frequency $ versus the dimensionless wave number |ς| for flexural modes of the
piezoelectric circular rod with and without thin film coating in Figs. 1 and 2.

Fig. 1. Non-dimensional wave number |ς| versus non-dimensional frequency $ of flexural sym-
metric modes of the piezoelectric cylindrical rod with the coating.

Fig. 2. Non-dimensional wave number |ς| versus non-dimensional frequency $ of flexural an-
tisymmetric modes of the piezoelectric cylindrical rod with the coating.
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Figure 1 shows the linear propagation of non-dimensional frequencies with re-
spect to its wave number in different rotational speeds of the rod with the coating.
But in Fig. 2, there is a small energy transfer between the modes in the lower
range of wave number which might happen due to the coating and rotational
effect of the rod. The rotation increases the magnitude of the non-dimensional
frequency in Figs. 1 and 2. Figures 3 and 4 exhibit the dispersion of phase veloc-
ity modes with non-dimensional wave number for different rotational speeds in
the absence of the coating. From Figs. 3 and 4, it is observed that, as the wave
number increases the phase velocity is decreasing to the lower limit and travels
in the wave propagation for Ω = 0.5 rad/s in antisymmetric flexural mode. The
cross-over point between the flexural modes of phase velocity shows that there is

Fig. 3. Non-dimensional wave number |ς| versus phase velocity of flexural symmetric modes
of the piezoelectric cylindrical rod without the coating.

Fig. 4. Non-dimensional wave number |ς| versus phase velocity of flexural antisymmetric modes
of the piezoelectric cylindrical rod without the coating.
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variation in the energy level between the modes of vibrations due to the impact
of rotation. The rotation decreases the magnitude of the phase velocity in the
rod.

Figures 5 and 6 reveal that the variation of relative frequency shifts with the
wave number |ς| for the longitudinal and flexural modes of the piezoelectric rod
with and without the coating layer. The relative frequency shift is quite high at
lower wave number (higher wavelength) and becomes steady with increasing wave
number (lower wavelength). The relative frequency shift profiles are dispersive
in trend for the rod with the coating and also, the symmetric modes are getting
high amplitude in the rod without the coating. The crossover points between the

Fig. 5. Non-dimensional wave number |ς| versus relative frequency shift of the piezoelectric
cylindrical rod with the coating.

Fig. 6. Non-dimensional wave number |ς| versus relative frequency shift of piezoelectric cylin-
drical rod without coating.
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vibration modes represents the transfer of energy due to the added mass effect
of coating and rotational speed.

A comparison is made between the electro-mechanical coupling versus the
wavenumber |ς| of a piezoelectric rotating rod for the longitudinal and flexural
modes with and without the coating and is shown in Figs. 7 and 8. From Figs. 7
and 8, it is observed that both the Lm and Fsm mode increase as wave number
increases. But in Fig. 8 the wave propagation merges for |ς| < 0.4 and increases
monotonically for the remaining range of wave number. Also, it is observed that
in symmetric modes the coupling effect gets higher in the presence of the coating.

Fig. 7. Non-dimensional wave number |ς| versus electro mechanical coupling of the piezoelectric
cylindrical rod with the coating.

Fig. 8. Non-dimensional wave number |ς| versus electro mechanical coupling of the piezoelectric
cylindrical rod without the coating.
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This shows the strong bondage between the interfacial boundaries of the rod and
the coating layer.

Figures 9–12 represent the propagation of electric displacement with respect
to the thickness of the coated layer with different rotational speeds. Whenever
the thickness of the rod increases the electric displacement is decreasing and
again increasing and travels in the wave propagation. Also, it is noticed in all
the figures that the trend of the curve is oscillating when the rotational speed
increases. These trends of the curves admit the elastic properties of the solid due
to rotational effect and coating of the material.

Fig. 9. Variation of electric displacement versus thickness of the coating material h′

for Ω = 0.

Fig. 10. Variation of electric displacement versus thickness of the coating material h′

for Ω = 0.2.
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Fig. 11. Variation of electric displacement versus thickness of the coating material h′

for Ω = 0.3.

Fig. 12. Variation of electric displacement versus thickness of the coating material h′

for Ω = 0.5.

6. Conclusions

The influence of rotation in an axisymmetric wave propagation in a piezoelec-
tric circular rod coated with the thin film is discussed using the three-dimensional
theory of piezoelectricity. Three displacement potential functions are introduced
to uncouple the equations of motion, electric conduction. The frequency equa-
tions are obtained for longitudinal and flexural modes of vibration and are
studied numerically for the PZT-4 material rod with the gold coating. The
computed non-dimensional frequency, phase velocity, relative frequency shift,
electro-mechanical coupling and electric displacements are presented in the form
of dispersion curves. From the graphical pattern, it is observed that the rotation
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and the coating of the piezoelectric rod are greatly influenced by the variations
of the mechanical parameters in symmetric and anti-symmetric flexural modes.
Also, numerical results show that the inclusion of thin film coating has a certain
effect on the dispersion relation of wave propagation in the rotating piezoelectric
rod. Thus in the design of rotating sensors which are used in navigation field,
the coupling between the thin film coating and the sensors should be taken into
account for constructive modeling
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