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A static and dynamic analysis of Kirchhoff plates is presented in this paper. The pro-
posed approach avoids Kirchhoff forces at the plate corners and equivalent shear forces at
a plate boundary. Two unknown variables are considered at the boundary element node. The
governing integral equations are derived using Betti’s theorem. The rectilinear and curved
boundary element of the constant type are used. The non-singular formulation of the bound-
ary (static analysis) and boundary-domain (free vibration analysis) integral equations with
one and two collocation points associated with a single constant boundary element located at
a plate edge are presented. Additionally, the classic three-node isoparametric curved bound-
ary elements are introduced in static analysis according to the non-singular approach. Static
fundamental solution and Bèzine technique are applied to the free vibration analysis. To estab-
lish the plate inertial forces, a plate domain is divided into triangular or annular sub-domains
associated with one suitable collocation point.
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1. Introduction

The Boundary Element Method (BEM) was created as an independent nu-
merical tool to solve problems, e.g., in the field of potential theory, theory of
elasticity, and engineering theory of structures. In its purest approach the BEM
does not require the entire domain discretization but only the boundary of a con-
sidered structure. The main advantage of BEM is its simplicity of computational
algorithms in relation to engineering problems. The general application of BEM
in a variety of fields of engineering analysis, together with the appropriate so-
lutions and a discussion of the basic types of boundary elements was described
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by Burczyński [1], Wrobel and Aliabadi [2], and Katsikadelis [3]. Many
authors applied the BEM widely to static, dynamic, and stability analysis of
plates, e.g., Altiero and Sikarskie [4], Bèzine and Gamby [5], Stern [6],
and Hartmann and Zotemantel [7]. A comparison of the effectiveness of
the Boundary Element Method with the Finite Element Method and applica-
tion of BEM in the analysis of thick plates was carried out by Debbih [8, 9].
The dynamic analysis of plates according to BEM algorithms was presented by
Beskos [10] and Wen, Aliabadi and Young [11]. Shi [12] applied BEM for-
mulation for vibration and initial stability problems of orthotropic thin plates.
Myślecki and Oleńkiewicz [13, 14] used the non-singular approach of bound-
ary integral equations to free vibration analysis of thin plates wherein the deriva-
tion of the second boundary integral equation was executed for additional col-
location points located outside of a plate domain. A number of contributions
devoted to the analysis of plates was presented by:Katsikadelis [15, 16], Kat-
sikadelis, Sapountzakis and Zorba [17], Katsikadelis and Kandilas [18],
Katsikadelis and Sapountzakis [19]. A modified, simplified formulation of
the boundary integral equation for a thin plate was proposed by Guminiak [20].
This approach was applied to a dynamic analysis of thin plates [21–24]. Sygul-
ski presented a number of publications devoted to the analysis of fluid-structure
interaction, which was described widely in [25]. The author connected FEM and
BEM to solve dynamic influence of surrounding air on a pneumatic shell with
application of original computational algorithms.
The conception of the Analog Equation Method (AEM) was created and

introduced by Katsikadelis [26] to fully overcome the major drawback of
the BEM in pure form, which is its limitation to linear problems with known
fundamental solutions. This version of BEM is based on a formulation of the
boundary-domain integral equation method and can efficiently treat not only
linear problems whose fundamental solution cannot be established or is diffi-
cult to treat numerically but also nonlinear differential equations and systems
of them as well. Babouskos and Katsikadelis [27, 28] applied AEM and
BEM methodology to solve the problem of a flutter instability of the dumped
plate subjected by conservative and non-conservative loading. Application of
the rectilinear and curvilinear boundary elements in static analysis of plates
was presented in papers [29–31].
In the present paper, the static and dynamic analysis of plate by the BEM

will be presented. The analysis will focus on the modified formulation of the
governing boundary-domain integral equation in thin plate bending. The recti-
linear and curvilinear boundary elements will be applied in the analysis. The
Bèzine [5] technique will be applied to derive directly the boundary-domain
integral equation.
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2. Integral formulation of a plate bending and static problem

The differential equation governing the static bending of isotropic plates with
constant thickness has the known form [32]

(2.1) D · ∇4w(x, y) = p(x, y),

where D = Eh3

12(1−v2)
is the plate stiffness, h is plate thickness, E and v are the

Young modulus and the Poisson ratio.
In the majority of contributions devoted to the application of BEM to the

thin (Kirchhoff) plate theory, the derivation of the boundary integral equation
involves the known boundary variables of the classic plate theory, i.e. the shear
force and the concentrated corner forces. Thus, on the plate boundary two phys-
ical quantities are considered: the equivalent shear force Vn, reaction at the plate
k-th corner Rk, the bending moment Mn, the corner concentrated forces, and
two geometric variables: the displacement wb and the angle of rotation in the
normal direction ϕn. The solution of differential Eq. (2.1) can be expressed in
the form of an integral representation as two boundary integral equations. These
equations can also be derived directly using Betti’s theorem. Two plates are con-
sidered: an infinite plate, subjected to the unit concentrated force and a real one,
subjected to the real loading p(x, y). The first equation has the form:

(2.2) c(x) · w(x) +

∫

Γ

[V ∗
n (y,x) · wb(y)−M∗

n(y,x) · ϕn(y)] · dΓ (y)

−

K∑

k=1

R∗(k,x) · w(k) =

∫

Γ

[Vn(y) · w
∗(y,x)−Mn(y,x) · ϕ

∗
n(y,x)] · dΓ (y)

−

K∑

k=1

Rk · w
∗(k,x) +

∫

Ω

p(y) · w∗(y,x) · dΩ(y),

where the fundamental solution of this biharmonic equation

(2.3) ∇4w∗(y,x) =
1

D
· δ(y,x),

which is the free space Green function given as

(2.4) w∗(y,x) =
1

8πD
· r2 · ln(r)

for a thin isotropic plate, r = |y − x|, δ is the Dirac delta, x is the source point,
and y is a field point. The coefficient c(x) is taken as:
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• c(x) = 1, when x is located inside the plate domain,
• c(x) = 0.5, when x is located on the smooth boundary,
• c(x) = 0, when x is located outside the plate domain.
The second boundary integral equation can be obtained by replacing the

unit concentrated force P ∗ = 1 by the unit concentrated moment M∗
n = 1. Such

the replacement is equivalent to the differentiation of the first boundary integral
Eq. (2.2) with respect to the co-ordinate n at a point x belonging to the plate
domain and letting this point approach the boundary and taking n coincide with
the normal to it. The resulting equation has the form:

(2.5) c(x) · ϕn(x) +

∫

Γ

[
V

∗
n(y,x) · wb(y)−M

∗
n(y,x) · ϕn(y)

]
· dΓ (y)

−
K∑

k=1

R
∗
(k,x) · w(k) =

∫

Γ

[Vn(y) · w
∗(y,x)−Mn(y) · ϕ

∗
n(y,x)] · dΓ (y)

−

K∑

k=1

Rk · w
∗(k,x) +

∫

Ω

p(y) · w∗(y,x) · dΩ(y),

where

{
V

∗
n(y,x),M

∗
n(y,x), R

∗
(y,x), w∗(y,x), w∗(y,x), ϕ∗

n(y,x)
}

=
∂

∂n(x)
{V ∗

n (y,x),M
∗
n(y,x), R

∗(k,x), w∗(k,x), w∗(y,x), ϕ∗
n(y,x)} .

The second boundary integral equation can be also derived by introducing
an additional collocation point which is located in the same normal line outside
the plate edge. According to this approach, the second equation has the same
mathematical form as the first one (2.2). This double collocation point approach
was presented in publication [13, 14]. The issues related to the assembly of the
algebraic equations in terms of the classical Boundary Element Method are
discussed in many papers, e.g. [3].
The plate bending problem can be also formulated in the modified, simplified

way, using an integral representation of the plate biharmonic equation. Because
the concentrated force at the corner is used only to satisfy the differential bihar-
monic equation of the thin plate, one can assume that it could be distributed
along a plate edge segment close to the corner [30]. Hence, terms in the bound-
ary integral Eqs. (2.2) and (2.5) which correspond to the corner force R can be
substituted in the following way:
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−
K∑

k=1

Rk · w
∗(k,x) =

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y),(2.6)

−
K∑

k=1

Rk · w
∗(k,x) =

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y),(2.7)

where the subscript k denotes an unknown segment of the plate edge near the
corner. In the Eqs. (2.2) and (2.5) the fundamental twisting moment M∗

ns(y)
must be considered, too. Hence, the boundary integral equations will take the
form:

(2.8) c(x) · w(x) +

∫

Γ

[T ∗
n(y,x) · w(y)−M∗

n(y,x) · ϕn(y)−M∗
ns(y,x) · ϕs(y)]

· dΓ (y) =

∫

Γ

[Tn(y) · w
∗(y,x)−Mn(y) · ϕ

∗
n(y,x)] · dΓ (y)

+

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y) +

∫

Ω

p(y) · w∗(y,x) · dΩ(y),

(2.9) c(x) · ϕn(x) +

∫

Γ

[
T
∗
n(y,x) · w(y)−M

∗
n(y,x) · ϕn(y)−M

∗
ns(y,x) · ϕs(y)

]

· dΓ (y) =

∫

Γ

[Tn(y) · w
∗(y,x)−Mn(y) · ϕ

∗
n(y,x)] · dΓ (y)

+

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y) +

∫

Ω

p(y) · w∗(y,x) · dΩ(y).

The length k of the plate edge segment is unknown. It allows us to include
components

∫

Γ

[Tn(y) · w
∗(y,x)] · dΓ (y) with

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y)

and
∫

Γ

[Tn(y) · w
∗(y,x)] · dΓ (y) with

∫

Γk

Rn(y) · w
∗(y,x) · dΓk(y)
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under the common integral:

(2.10) c(x) · w(x) +

∫

Γ

[T ∗
n(y,x) · w(y)−M∗

n(y,x) · ϕn(y)−M∗
ns(y,x) · ϕs(y)]

· dΓ (y) =

∫

Γ

[Tn(y) · w
∗(y,x) +Rn(y) · w

∗(y,x)−Mn(y) · ϕ
∗
n(y,x)] · dΓ (y)

+

∫

Ω

p(y) · w∗(y,x) · dΩ(y),

(2.11) c(x) · ϕn(x) +

∫

Γ

[
T
∗
n(y,x) · w(y)−M

∗
n(y,x) · ϕn(y)−M

∗
ns(y,x) · ϕs(y)

]

· dΓ (y) =

∫

Γ

[Tn(y) · w
∗(y,x) +Rn(y) · w

∗(y,x)−Mn(y) · ϕ
∗
n(y,x)] · dΓ (y)

+

∫

Ω

p (y) · w∗(y,x) · dΩ(y).

After separating the common factors w∗(y,x) and w∗(y,x) in Eqs. (2.10)
and (2.11), respectively, these equations will take following forms:

(2.12) c(x) · w(x) +

∫

Γ

[T ∗
n(y,x) · w(y)−M∗

n (y,x) · ϕn(y)−M∗
ns(y,x) · ϕs(y)]

· dΓ (y) =

∫

Γ

[(Tn(y) +Rn(y)) · w
∗(y,x)−Mn(y) · ϕ

∗
n(y,x)] · dΓ (y)

+

∫

Ω

p(y) · w∗(y,x) · dΩ(y),

(2.13) c(x) · ϕn(x) +

∫

Γ

[
T
∗
n(y,x) · w(y)−M

∗
n(y,x) · ϕn(y)−M

∗
ns(y,x) · ϕs(y)

]

· dΓ (y) =

∫

Γ

[(Tn(y) +Rn(y)) · w
∗(y,x)−Mn(y) · ϕ

∗
n(y,x)] · dΓ (y)

+

∫

Ω

p(y) · w∗(y,x) · dΩ(y).
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After introducing the new notation

(2.14) T̃n(y) = Tn(y) +Rn(y)

the boundary integral Eqs. (2.12) and (2.13) will have the following forms:

(2.15) c(x) · w(x) +

∫

Γ

[T ∗
n(y,x) · w(y)−M∗

n(y,x) · ϕn(y)−M∗
ns(y,x) · ϕs(y)]

· dΓ (y) =

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗
n(y,x)

]
· dΓ (y)

+

∫

Ω

p(y) · w∗(y,x) · dΩ(y),

(2.16) c(x) · ϕn(x) +

∫

Γ

[
T
∗
n(y,x) · w(y)−M

∗
n(y,x) · ϕn(y)−M

∗
ns(y,x) · ϕs(y)

]

· dΓ (y) =

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗
n(y,x)

]
· dΓ (y)

+

∫

Ω

p(y) · w∗(y,x) · dΩ(y).

The expression (2.14) denotes shear force for clamped and for simply-supported
edges:

T̃n(y) =

{
Vn(y) on the boundary far from the corner,

Rn(y) on a small fragment of the boundary close to the corner.

Because in all the cases (Eqs. (2.2), (2.5) and (2.15), (2.16)) the forces on the
real plate: Vn(y) and Tn(y) are multiplied by the same fundamental functions
w∗(y,x) and w∗(y,x), the force T̃n(y) can be treated as an equivalent shear force
Vn(y) on a fragment of the boundary which is located far from the corner. In
the case of the free edge we must combine the angle of rotation in the tangent
direction ϕs(y) with the fundamental function M∗

ns(y). The relation between
ϕs(y) and the deflection is known: ϕs(y) = dw(y)

ds , the angle of rotation ϕs(y)
can be evaluated using the finite difference scheme and deflections with two
or more adjacent nodal values. In this analysis, the employed finite difference
scheme includes the deflections of two adjacent nodes. As a result, the boundary
integral Eqs. (2.15) and (2.16) will take the forms:
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(2.17) c(x) · w(x) +
∫

Γ

[
T ∗
n(y,x) · w(y)−M∗

ns(y,x) ·
dw (y)

ds
−M∗

n(y,x) · ϕn(y)

]

· dΓ (y) =

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗
n(y,x)

]
· dΓ (y)

+

∫

Ω

p(y) · w∗(y,x) · dΩ(y),

(2.18) c(x) · ϕn(x)+

∫

Γ

[
T
∗
n(y,x) · w(y)−M

∗
ns(y,x) ·

dw(y)

ds
−M

∗
n(y,x) · ϕn(y)

]

· dΓ (y) =

∫

Γ

[
T̃n(y) · w

∗(y,x)−Mn(y) · ϕ
∗
n(y,x)

]
· dΓ (y)

+

∫

Ω

p(y) · w∗(y,x) · dΩ(y).

2.1. Types of boundary element

According to the simplest approach, the rectilinear boundary element of the
constant type is introduced (Fig. 1a). It is also possible to define geometry of the
element considering three nodal points and only one collocation point connected
with a relevant physical boundary value (Fig. 1b). The collocation point may
be located slightly outside of a plate edge. The geometry of the element can be
defined by the polynominal functions (shape functions), described in standard

Fig. 1. Boundary elements in non-singular approach.
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coordinate system for η ∈ 〈−1, 0, 1〉 (Fig. 2). These functions have a known
form:

(2.19)

N1(η) =
1

2
η · (η − 1),

N2(η) = 1− η2,

N3(η) = −
1

2
η · (η − 1).

Fig. 2. Shape functions for three-node
boundary element.

The isoparametric curved boundary element is shown in Fig. 1c. In this case,
any boundary variable B(η) is described by functions (2.19):

(2.20) B(η) = B1 ·N1(η) +B2 ·N2(η) +B3 ·N3(η).

2.2. Assembly of a set of algebraic equations

A plate edge is discretized using boundary elements. In a matrix notation
the set of algebraic equations has the form:

(2.21) G ·B = F,

where G is a matrix of suitable boundary integrals, B is the vector on unknown
variables and F is right-hand-side vector. If on the part of a plate boundary free
edge takes place, then Eq. (2.21) may be prescribed to the form:

(2.22)

[
GBB GBS

∆ −I

]
·

{
B

ϕs

}
=

{
FB

0

}
,
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where
B is the boundary variables vector (column matrix) of the dimension (2N × 1),
where N is the number of boundary nodes (or the number of the elements
of the constant type);

ϕs is the vector (column matrix) of boundary angles of rotation in tangent
direction depending on boundary deflections, this vector has the dimension
(S × 1), where S is the number of boundary nodes (or the number of the
elements of the constant type) along the free edge;

GBB and GBS are the matrices of the dimension (2N × 2N) and of the dimen-
sion (2N × S), respectively, grouping boundary integrals and depending on
the type of plate boundary, where N is the number of boundary nodes (or
the number of the elements of the constant type) and S is the number of
boundary elements along free edge;

∆ is the matrix grouping difference operators connecting angles of rotation in
tangent direction with deflections of suitable boundary nodes if a plate has
a free edge and I is the unit matrix.
In the computational program, deflections at two neighbouring nodes are

used. Hence, for a clamped edge, a simply-supported edge and a free edge, two
independent unknowns are always considered. All of the designations are shown
in Fig. 3, where the construction of a set of algebraic equations is presented on
the example of the constant type of the boundary element.

Fig. 3. Assembly of set of algebraic equations in static
analysis on the example of the constant type elements.
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The boundary integral equation will be formulated in the non-singular ap-
proach. To construct the characteristic matrix G, integration of a suitable fun-
damental function on the boundary is needed. Integration is done in the local
coordinate system ni, si connected with i-th boundary element physical node
and next, these integrals must be transformed to nk, sk coordinate system, con-
nected with k-th element physical node [31]. Localization of collocation point
is defined by the parameter δ̃ or non-dimensional parameter ε. This parameter
can be defined as ε = δ̃/d or ε = δ̃/c (Fig. 1).
To calculate elements of the characteristic matrix the following methods are

applied: a) classic, numerical Gauss procedure for non-quasi diagonal elements
or b) modified, numerical integration of Gauss method for quasi-diagonal ele-
ments proposed by Litewka and Sygulski [31]. The authors proposed inverse
localization of Gauss points in the domain of integration. Boundary integrals on
a curved element are calculated according to Gauss method. Integrals of fun-
damental functions over the plate edge are calculated using ni, si coordinate
system, connected with i-th physical node. Then, they are transformed to nk,
sk coordinate system [20–24, 30]:

(2.23)

ϕ∗
nk

= ϕ∗
ni

· cnn + ϕ∗
si · cns,

M∗
nk

= M∗
ni

· c2nn +M∗
si · c

2
ns + 2 ·M∗

nisi · cnn · cns,

M∗
nksk

=
(
M∗

si −M∗
ni

)
· cnn · cns +M∗

nisi ·
(
c2nn − c2ns

)
,

T ∗
nk

= T ∗
ni

· cnn + T ∗
si · cns,

where cnn = cos(nk, ni) and cns = cos(nk, si).
In the case of consideration of a free edge, the angle of rotation in tangent

direction can be expressed by deflection of two neighbouring nodes

(2.24) ϕ(i−1)
s = ϕ(i)

s = ϕ(i+1)
s =

w
(i+1)
b − w

(i)
b

di+1
,

where di is a projection of section connecting physical nodes (collocation points)
i and i+1 on the line tangential to the boundary element in collocation point
i-th [29, 30].
Application of the Boundary Element Method allows us to introduce in

a simple way a boundary support similar to the support at the vicinity of the
selected point. Definition of this boundary support for example of simplified
curved boundary element is shown on Fig. 4.
The boundary condition is defined as follows: w = 0, ϕs = 0, ϕn 6= 0, and

the unknown boundary values are: shear force Tn and ϕn the angle of rotation
in direction n, which is identical to the definition of part of a simply-supported
edge.



14 M. GUMINIAK

Fig. 4. Boundary support at the
vicinity of the selected point.

For isoparametric, curvilinear elements (Fig. 1c) during the procedure of
aggregation of characteristic matrix G, values of directional cosines cnn and cns
in the common node k are calculated as the arithmetic mean of the two values
assigned to this node [29], (Fig. 5):

(2.25) cnn =
c
(i)
nn + c

(i+1)
nn

2
, cns =

c
(i)
ns + c

(i+1)
ns

2
.

Fig. 5. Construction of the characteristic matrix. Calculation
of the directional cosines in the common node [29].

It is assumed that the loading p is acting on a plate surface and has a constant
distribution. Integrals

p(y) ·

∫

Ω

w∗(x,y) · dΩ(y) and p(y) ·

∫

Ω

w∗(x,y) · dΩ(y)

taking place in Eqs. (2.17) and (2.18) can be evaluated analytically in terms
of Abdel-Akher and Hartley’s proposition (contour of loading is expressed in
polygonal form) [32].
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2.3. Calculation of deflection, angle of rotation, bending
and twisting moments inside a plate domain

The solution of the set of algebraic equations allows us to determine bound-
ary variables. Then, it is possible to calculate the deflection, angle of rotation
in an arbitrary direction, bending and torsional moments and shear forces at an
arbitrary point of the plate domain. Each value can be expressed as the sum of
two variables depending on the boundary variables B and external loading p.
For example, the deflection can be expressed in the form

(2.26) w = w
(
B, p

)

which can be calculated directly using boundary integral Eq. (2.17). A similar
relation can be applied to establish the angle of rotation in an arbitrary direction

(2.27) ϕξ = ϕξ

(
B, p

)

which is equivalent to differentiate boundary integral Eq. (2.17) with respect to
ξ co-ordinate.
In terms of the thin plate theory, bending moments and torsional moment

are given in the classic form

(2.28)

Mx(x, y) = −D · (w,xx+v · w,yy),

My(x, y) = −D · (w,yy +v · w,xx),

Mxy(x, y) = −D · (1− v) · w,xy

and w(x, y) is the function of displacements and x, y are the global coordinates
of an arbitrary point. To establish the bending and torsional moments at the
point inside a plate domain, it is necessary to double differentiate the boundary
integral Eq. (2.17) with respect to x, y, or x and y co-ordinates. As a result,
the bending and torsional moments can be expressed by the boundary B and
domain p variables

(2.29)

Mx = Mx

(
B, p

)
,

My = My

(
B, p

)
,

Mxy = Mxy

(
B, p

)
.

The shear forces can be calculated according to thin plate theory

(2.30)
Qx =

∂Mx(x, y)

∂x
+

∂Myx(x, y)

∂y
= −D · (w,xxx+w,xyy ),

Qy =
∂My(x, y)

∂y
−

∂Mxy(x, y)

∂x
= −D · (w,yxx +w,yyy)
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and they can be expressed in the form

(2.31)
Qx = Qx

(
B, p

)
,

Qy = Qy

(
B, p

)

which calculation of domain variables was described widely in [30].

3. Free vibration analysis of thin plates

The free vibration problem of a thin plate is considered. Inside a plate do-
main additional collocation points associated with lumped masses are intro-
duced. In each i-th internal collocation point, the vectors of displacement wi(t),
acceleration ẅi(t), and inertial force Pi(t) are established

(3.1)

wi(t) = Wi · sinωt,

ẅi(t) = −ω2 ·Wi · sinωt,

Pi(t) = Pi · sinωt

and the inertial force amplitude is described

(3.2) Pi = ω2 ·mi ·Wi,

where ω is the plate natural frequency and t is the time.
The boundary-domain integral equations have the character of amplitude

equations and they are presented in the forms:

(3.3) c(x) · w(x)+

∫

Γ

[
T ∗
n (y,x) · w(y)−M∗

ns (y,x) ·
dw (y)

ds
−M∗

n (y,x) · ϕn(y)

]

· dΓ (y) =

∫

Γ

[
T̃n(y) · w

∗ (y,x)−Mn(y) · ϕ
∗
n (y,x)

]
· dΓ (y)

+

I∑

i=1

Pi · w
∗(i, x),

(3.4) c(x)·ϕn(x)+

∫

Γ

[
T
∗
n (y,x)·w(y)−M

∗
ns (y,x) ·

dw (y)

ds
−M

∗
n (y,x) · ϕn(y)

]

· dΓ (y) =

∫

Γ

[
T̃n(y) · w

∗ (y,x)−Mn(y) · ϕ
∗
n (y,x)

]
· dΓ (y)

+
I∑

i=1

Pi · w
∗(i,x).
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3.1. Assembly of a set of algebraic equations

The set of algebraic equations in a matrix notation has the following form,
(Fig. 6):

(3.5)



GBB GBS −λ ·GBw ·Mp

∆ −I 0

GwB GwS −λ ·Gww ·Mp + I


 ·





B

ϕs

W





=





0

0

0




,

where
B and ϕs are the vectors of the amplitudes of the boundary variables;
W is the vector of the amplitudes of internal deflections associated with lumped
masses;

GBB andGBS are dimension matrices of the dimensions (2N×2N) and (2N×S)
grouping boundary integrals and depend on type of boundary, where N is
the number of boundary nodes (or the number of elements of the constant
type) and S is the number of boundary elements along a free edge;

GBw is the matrix of the dimension (2N×M) grouping values of the funda-
mental function w∗ established at internal collocation points;

∆ is the matrix grouping difference operators connecting angle of rotations in
tangent direction with deflections of suitable boundary nodes if a plate has
a free edge;

Fig. 6. Assembly of the set of algebraic equations in free vibration
analysis on the example of the constant type boundary elements.
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GwB is the matrix of the dimension (M×2N) grouping the boundary integrals
of the appropriate fundamental functions, where M is the number of the
internal collocation points and N is the number of the boundary nodes;

GwS is the matrix of the dimension (M×S) grouping the boundary integrals
of the appropriate fundamental functions;

Gww is the matrix of the dimension (M×M) grouping the values of the funda-
mental function w∗ established at internal collocation points;

Mp = diag(m1,m2,m3, . . . ,mM ) is a plate mass matrix, λ = ω2 and I is the
unit matrix (M is the number of lumped masses).
Elimination of boundary variables B and ϕs from matrix Eq. (3.5) leads to

a standard eigenvalue problem

(3.6)
{
A− λ̃ · I

}
·W = 0,

where

(3.7) A =
{
Gww ·Mp − (GwB −GwS ·∆) · [GBB +GBS]

−1 ·GBw ·Mp

}
.

4. Numerical examples

Circular and elliptic plates with various boundary conditions are considered.
Twenty Gauss points are applied to evaluate boundary integrals. The contour
of the circular plate is divided by 32 and 64 boundary elements with the same
length. For an elliptic plate, localization of geometrical edge nodes for 32 bound-
ary elements is presented in the Fig. 7. For 64 boundary elements, similar local-
ization is assumed, dividing all of segments: l, l/2, l/3, and l/6 by halves.

Fig. 7. Localization of boundary elements inscribed in ellipse contour [30].
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The following plate properties are assumed: E = 205.0 GPa, v = 0.3,
ρp = 7850 kg/m3, thickness hp = 0.01 m. Circular plate radius a = 2.0 m.
For the elliptic plate the lengths of the half-axis: a = 3.0 m and b = 2.0 m.
The numerical analysis was conducted using the following boundary and finite
element discretisation:

• BEM I – rectilinear boundary element of the constant type, ε = δ̃/d = 0.1;
• BEM II – rectilinear boundary element of the constant type, the second
boundary-domain Eq. (2.18) for static and (3.4) for free vibration analysis
are obtained for the set of two collocation points assigned to each single
boundary element with the same fundamental solution w∗, localization of
two collocation points for a single boundary element is determined by:
ε1 = δ̃1/d = 0.01 and ε2 = δ̃2/d = 0.1;

• BEM III – curved, simplified boundary element of the constant type, ε =
δ̃/c = 0.1;

• BEM IV – three-node isoparametric curved boundary element, ε = δ̃/c =
0.1;

• FEM – eight-node doubly curved shell finite element with reduced inte-
gration (S8R), Abaqus/STANDARD v6.12 computational program [34].
The circular plate domain was divided into 3936 finite elements.

4.1. Static analysis

Circular and elliptic plates are considered. The geometry, material proper-
ties and discretisation are assumed above according to Sec. 4. All plates are
subjected only to the uniformly distributed loading p = 1.0 kN/m2 acting on all
domain surface. The results of calculations as deflection and bending moments
are presented in the non-dimensional parameters.

4.1.1. Circular plate clamped on boundary. The results of calculation are
presented in Tables 1–3.

Table 1. Deflection at the plate centre.

Number
of boundary
elements

w̃ = wD/pa4

BEM I [30] BEM II BEM III [30] BEM IV Analytical
solution [33]

32 0.0153482 0.0153778 0.0156219 0.0156220
0.0156250

64 0.0155502 0.0155639 0.0156210 0.0156231
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Table 2. Bending moment at the plate centre.

Number
of boundary
elements

M̃r = Mr/pa
2

BEM I [30] BEM II BEM III [30] BEM IV Analytical
solution [33]

32 0.0812583 0.0806215 0.0812634 0.0812592
0.0812500

64 0.0812528 0.0810958 0.0812545 0.0812510

Table 3. Bending moment on boundary.

Number
of boundary
elements

M̃r = Mr/pa
2

BEM I [30] BEM II BEM III [30] BEM IV Analytical
solution [33]

32 −0.125187 −0.124077 −0.123913 −0.125206
−0.125000

64 −0.125033 −0.124785 −0.124823 −0.124961

4.1.2. Circular plate simply-supported on boundary. The results of calcula-
tion are presented in Tables 4 and 5.

Table 4. Deflection at the plate centre.

Number
of boundary
elements

w̃ = wD/pa4

BEM I [30] BEM II BEM III [30] Analytical
solution [33]

32 0.0598860 0.0613256 0.0598683
0.0637019

64 0.0620345 0.0627804 0.0631792

Table 5. Bending moment at the plate centre.

Number
of boundary
elements

M̃r = Mr/pa
2

BEM I [30] BEM II BEM III [30] Analytical
solution [33]

32 0.214596 0.201167 0.198221
0.206250

64 0.207696 0.204218 0.204911

4.1.3. Circular plate supported at three points on boundary. The circular
plate supported at three points on boundary is considered (Fig. 8).
The results of calculation are presented in Tables 6 and 7. The following

designation is assumed P = pa2 · π.
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Fig. 8. Circular plate supported at three points on boundary.

Table 6. Deflection at the plate centre.

Number
of boundary
elements

w̃A = wAD/Pa2

BEM I BEM II BEM III Analytical
solution [33]

64 0.03636 0.03655 0.03637 0.03620

Table 7. Principal moments at the plate centre.

Number
of boundary
elements

BEM I BEM II BEM III

M̃IA = MIA/P

64 0.070077 0.070580 0.071305

M̃IIA = MIIA/P

64 0.058872 0.059355 0.060209

4.1.4. Elliptic plate clamped on boundary. The results of calculation are
presented in Tables 8–10.

Table 8. Deflection at the plate centre.

Number
of boundary
elements

w̃A = wAD/pb4

BEM I [30] BEM II BEM III [30] Analytical
solution [33]

32 0.0274325 0.0274708 0.0278863
0.0278926

64 0.0275220 0.0275314 0.0278648
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Table 9. Bending moment at the plate centre.

Number of boundary
elements

BEM I [30] BEM II BEM III [30]
Analytical
solution [33]

M̃xA = MxA/pb
2

32 0.0826588 0.0826889 0.0830993
0.0830578

64 0.0828583 0.0827314 0.0830984

M̃yA = MyA/pb
2

32 0.125312 0.125379 0.126464
0.126446

64 0.125879 0.125523 0.126463

Table 10. Bending moment on boundary.

Number of boundary
elements

BEM I [30] BEM II BEM III [30]
Analytical
solution [33]

M̃xB = MxB/pb
2

32 −0.103246 −0.102141 −0.102433
−0.0991735

64 −0.101109 −0.100700 −0.101110

M̃yC = MyC/pb
2

32 −0.220628 −0.220663 −0.222646
−0.223140

64 −0.221884 −0.221363 −0.222647

4.1.5. Elliptic plate simply-supported on boundary. The results of calcula-
tion are presented in Tables 11 and 12.

Table 11. Deflection at the plate centre.

Number of boundary
elements

w̃A = wAD/pb4

BEM I [30] BEM II BEM III [30] Analytical
solution [33]

32 0.110148 0.111084 0.116411
0.115385

64 0.112546 0.111688 0.116395

Table 12. Bending moment at the plate centre.

Number of boundary
elements

BEM I [30] BEM II BEM III [30] Analytical
solution [33]

M̃xA = MxA/pb
2

32 0.213114 0.214340 0.219376
0.222000

64 0.213915 0.215354 0.222126

M̃yA = MyA/pb
2

32 0.356133 0.343355 0.353365
0.379000

64 0.367544 0.344413 0.368365
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4.2. Free vibration analysis

Circular plates are considered. Geometry, material properties, and discretisa-
tion are assumed above according to Sec. 4. Two types of localization of lumped
masses are proposed. The first one (a) with 128 lumped masses is presented in
Fig. 9. The second one (b) with 112 lumped masses is shown in Fig. 10. The re-

Fig. 9. Lumped masses localization.

Fig. 10. Discretization into sub-domains and lumped masses localization.
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sults of calculations as natural frequencies are presented in the non-dimensional
parameters. The i-th natural frequency is expressed in terms of parameter µi:

ωi =
µi

a2
·

√
D

ρp · hp
,

where ρp is a plate density. The modes are presented as two-dimensional graphs
of displacements located along x axis between points F and G (Fig. 9).
According to the analytical approach for continuous mass distribution and

axisymmetric boundary conditions, the natural frequencies can be expressed as
the two-index object ωmn, wherem and n are the numbers of the nodal diameters
and circles respectively. The values of calculated ωi according to the BEM and
FEM approach corresponding to the respective values of ωmn. In the tables, the
respective values of ωmn are indicated using the non-dimensional parameters
µmn.

4.2.1. Circular plate clamped on boundary. The results of calculation are
presented in Tables 13–16. The modes are presented in Fig. 11.

Table 13. Comparison of natural frequencies.

µi

Modes 1 (µ10) 2 and 3 (µ11) 4 and 5 (µ12) 6 (µ20) 7 and 8 (µ21)

BEM I(a) 10.1696 21.2822 34.7940 39.1814 50.5116

BEM I(b) 10.1711 21.6720 36.0846 40.6116 52.4364

BEM II(a) 10.1679 21.2828 34.7961 39.1749 50.5140

BEM II(b) 10.1679 21.6708 36.0844 40.5977 52.4363

BEM III(a) 10.1499 21.2437 34.7321 39.1065 50.4221

BEM III(b) 10.1503 21.6320 36.0164 40.5184 52.3363

FEM 10.2199 21.2681 34.8840 39.7817 51.0338

Analytical solution [35] 10.1679 21.7940 34.8460 39.7552 60.8490

Table 14. Influence of the parameter ε on the results of calculation µi, BEM I(a).

ε = δ̃/c 0.01 0.05 0.1 0.2 0.5

Modes

1 10.1727 10.1711 10.1696 10.1674 10.1652

2 and 3 21.2857 21.2840 21.2822 21.2798 21.2768

4 and 5 34.7983 34.7962 34.7940 34.7909 34.7868

6 39.1923 39.1870 39.1814 39.1736 39.1646

7 and 8 50.5165 50.5141 50.5116 50.5080 50.5028



STATIC AND FREE VIBRATION ANALYSIS OF THIN PLATES. . . 25

Table 15. Influence of the parameter ε on the results of calculation µi, BEM III(a).

ε = δ̃/c 0.01 0.05 0.1 0.2 0.5

Modes

1 10.1514 10.1482 10.1499 10.1501 10.1492

2 and 3 21.2454 21.2415 21.2437 21.2442 21.2431

4 and 5 34.7341 34.7288 34.7321 34.7332 34.7319

6 39.1121 39.0998 39.1065 39.1077 39.1042

7 and 8 50.4241 50.4167 50.4221 50.4246 50.4237

Fig. 11. Circular plate clamped on the whole edge. Modes 1–8, BEM III(a).

4.2.2. Circular plate simply-supported on boundary. The results of calcula-
tion are presented in Tables 16–18. The modes are presented in Fig. 12.

Table 16. Comparison of natural frequencies.

µi

Modes 1 (µ10) 2 and 3 (µ11) 4 and 5 (µ12) 6 (µ20) 7 and 8 (µ21)

BEM I(a) 4.9695 13.9162 25.5664 29.3974 39.6172

BEM I(b) 5.0132 14.2108 26.2463 29.5917 40.5584

BEM II(a) 4.9498 13.9162 25.5649 29.3808 39.6152

BEM II(b) 4.9868 14.2109 26.2466 29.5684 40.5586

BEM III(a) 4.8935 13.8920 25.5455 29.2894 39.5860

BEM III(b) 4.9303 14.1856 26.2240 29.4674 40.5243

FEM 4.9358 13.9011 25.6108 29.7301 39.9434



26 M. GUMINIAK

Table 17. Influence of the parameter ε on the results of calculation µi. BEM III(a).

ε = δ̃/c 0.01 0.05 0.1 0.2 0.5

Modes

1 4.9815 4.9763 4.9695 4.9569 4.9329

2 and 3 13.9160 13.9161 13.9162 13.9162 13.9154

4 and 5 25.5632 25.5647 25.5664 25.5696 25.5751

6 29.4055 29.4021 29.3974 29.3878 29.3659

7 and 8 39.6126 39.6149 39.6172 39.6207 39.6273

Table 18. Influence of the parameter ε on the results of calculation µi. BEM III(a).

ε = δ̃/c 0.01 0.05 0.1 0.2 0.5

Modes

1 6.9839 4.8250 4.8935 4.9185 4.9234

2 and 3 13.8487 13.8925 13.8920 13.8922 13.8924

4 and 5 24.4712 25.5704 25.5455 25.5360 25.5329

6 31.5309 29.2350 29.2894 29.3107 29.3156

7 and 8 37.7022 39.6282 39.5860 39.5688 39.5608

Fig. 12. Circular plate simply-supported on the whole edge. Modes 1–8, BEM III(a).

4.2.3. Circular plate supported at three points on boundary. The circular
plate supported at three points on a boundary is considered (Fig. 8). The results
of calculation are presented in Tables 19–21. The modes are presented in the Fig.
14 where displacements along x axis are shown. Additionally, to compare the
results of calculation, free vibration of a circular plate resting on three column
supports will be considered. The column support will be introduced according
to the Bèzine approach and free vibrations analysis presented in [24] as a sub-
domain with one collocation point. The rectilinear boundary element in the
non-singular approach for ε = δ̃/c = 0.1 is introduced and designed as BEM I∗.
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Fig. 13. Circular plate supported at three internal column supports
located near the free boundary.

Table 19. Comparison of natural frequencies.

µi

Modes 1 2 3 4 5 6 7 8

BEM I(a) 3.1354 3.4062 3.4306 10.1162 11.8526 12.7345 12.9057 21.2721

BEM I(b) 3.1361 3.4022 3.4459 10.0428 11.8373 12.7697 12.9821 21.4804

BEM II(a) 3.1326 3.4054 3.4225 10.0991 11.8514 12.7331 12.9045 21.2713

BEM II(b) 3.1336 3.4014 3.4375 10.0260 11.8362 12.7684 12.9809 21.4795

BEM III(a) 3.0858 3.3570 3.3671 10.1430 11.7724 12.6584 12.8644 21.2652

BEM III(b) 3.1572 3.4308 3.4528 10.0704 11.9436 12.8740 13.0733 21.5872

BEM I∗(a) 3.4552 3.4952 4.0123 10.0611 12.4699 14.0594 14.4777 21.2279

BEM I∗(b) 3.4390 3.4390 4.0132 9.9417 12.3835 14.1293 14.5609 21.3180

FEM 2.8765 3.7190 3.8089 10.0325 10.3183 13.9123 13.9153 20.7820

Table 20. Influence of the parameter ε on the results
of calculation µi, BEM I(a).

ε = δ̃/c 0.2 0.5 1.0

Modes

1 3.1315 3.1354 3.1608

2 3.4024 3.4062 3.4373

3 3.4230 3.4306 3.4444

4 10.1034 10.1162 10.1399

5 11.8222 11.8526 11.9587

6 12.6992 12.7345 12.8449

7 12.8767 12.9057 13.0069

8 21.2570 21.2721 21.3779
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Table 21. Influence of the parameter ε on the results
of calculation µi, BEM III(a).

ε = δ̃/c 0.2 0.5 1.0

Modes

1 2.9532 3.0858 3.1557

2 3.1166 3.3570 3.4347

3 3.1728 3.3671 3.4380

4 10.1883 10.1430 10.1444

5 11.2658 11.7724 11.9549

6 12.2287 12.6584 12.8371

7 12.5438 12.8644 12.9937

8 20.9594 21.2652 21.3818

Fig. 14. Circular plate supported at three points on boundary. Modes 1–8, BEM III(a).

Localisation of three identical square column support is presented in the Fig. 13.
The co-ordinates of the centres of three column supports are:

xB = 1.602 m, yB = 0.925 m;

xC = −1.602 m, yC = 0.925 m;

xD = 0.0 m, yD = −1.9 m.

The dimension of the side of the column cross-section is equal b = 0.1 m.
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5. Conclusions

The static and free vibration analyses of thin plates using the Boundary
Element Method were presented. These problems were solved with the modi-
fied, alternative approach, in which the boundary conditions are defined so that
there is no need to introduce equivalent boundary quantities dictated by the
boundary value problem for the biharmonic differential equation. The colloca-
tion version of the Boundary Element Method with non-singular calculations of
the boundary integrals was employed. The Bèzine technique was used to estab-
lish the vector of inertial forces inside a plate. The high number of boundary
elements and internal sub-surfaces are not required to obtain sufficient accuracy.
In the free vibration analysis it can be observed that regular, radial localisation
of lumped masses (Fig. 9) gives more accurate results, close to the analytical and
FEM solution for the clamped plate. For the plate simply-supported along all
edges the corresponding natural frequencies take similar values for both types
of lumped masses localisations. Some divergence of the first natural frequency
results obtained using BEM and FEM approach can be observed for the plate
supported on three points on a boundary. The influence of non-dimensional pa-
rameter ε on obtained results was presented, too. For the static analysis, the
influence of parameter ε on obtained results and conditioning of characteristic
matrix G was presented in [30]. The vibration problem of thin plate can be also
formulated using the fundamental solution describing dynamic behaviour of an
infinite plate. This fundamental solution has the form [1]

w∗(x,y, ω) =
i ·
[
H

(1)
0 (λr)−H

(1)
0 (i · λr)

]

8λ2
,

where λ4 =
(
ω2 · ρphp/D

)
and H

(1)
0 is the Hankel function of the first kind of

order zero. An application of this fundamental solution does not require dis-
cretisation of a plate domain but finally, in addition to the calculated natu-
ral frequencies, evaluation of displacements inside a plate domain is needed
to obtain the plate modes. An application of the static fundamental solution
(2.4) and a plate domain discretisation simplifies computational algorithms
and provides in a simple way to a standard eigenvalue problem yielding di-
rectly eigenvalues and eigenvectors. The presented approach can be applied to
solve fluid-structure interaction problems using the Boundary Element Method,
too [22].
An application of simple fundamental solution (2.4) allows us to expand the

analysed issue to the free or forced vibration problem of plates with variable
thickness considering fluid-plate interaction. In this case the Analogue Equation
Method connected to the BEM should be applied.
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The boundary element results obtained for the present conception of the
thin plate bending issue demonstrates the sufficient effectiveness and efficiency
of the proposed approach which may be useful in engineering for the static and
free vibration analyses of plates with the curved edges.
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