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This theoretical research work deals with the effect of aligned magnetic field flow and
heat transfer of carbon nanotubes towards a nonlinear stretching sheet. In addition, we have
considered two kinds of carbon nanotubes, namely SWCNTs and MWCNTs, used with water
as the base fluid. The governing boundary layer flow equations narrating partial differential
equations are transformed into a system of ordinary differential equations with the assistance
of similarity transformation. Obtained coupled non-linear differential equations are solved by
fourth-order Runge-Kutta (R-K) method along with shooting technique. A comparative study
of the formerly published results and the present results for a special case shows that all these
results are in an excellent agreement.
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1. Introduction

Recently, the research work concerning flow over a stretching sheet has pro-
duced great interest due to its abundant industrialized applications. For exam-
ple, in the preservation of bath, the boundary layer along physical management
conveyers, the production of canvas materials over an expulsion procedure, the
sweptback extrusion of soft sheer crystal and ported over a moving incessant
solid surface in a critical kind of flow arising in various engineering processes.
Thermal radiation effects on the flow over a stretching sheet, in the existence of
the transverse magnetic field, were examined by Reddy and Reddy [1]. Srini-
vas et al. [2] presented the effects of a chemical reaction on an unsteady flow
of a micropolar fluid in the direction of a permeable stretching sheet embedded
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in a non-Darcian porous medium. The stagnation nano-energy conversion prob-
lems were studied for conjugate mixed convection heat and mass transfer with
EMHD (electrical magnetohydrodynamic) field over a slip boundary stretching
surface by Hsiao [3]. Ahmed et al. [4] examined the magnetohydrodynamic
axisymmetric flow of power-law fluid model of an unsteady radially stretching
sheet under the influence of convective boundary conditions. A new numerical
method for solving the stagnation-point flow problem over a permeable stretch-
ing/shrinking sheet in porous media was employed by Bhatti et al. [5]. Different
types of fluid modles subject to a stretching sheet have been reported by many
researchers [6–11]. Recently, Khan et al. [12] have analyzed the thermal and con-
centration diffusion in Jeffery nanofluid flow over an inclined stretching surface.
The computational solution of the problem addressing the variable viscosity and
inclined Lorentz force effects on Williamson nanofluid over a nonlinear stretch-
ing sheet was explored by Khan et al. [13]. Flows due to a moving extensible
surfaces were examined by some authors [14–16].

Non-Newtonian fluid flow problems in fluid mechanics draw great attention
because of their unique challenge for engineers, physicists, and mathematicians.
The Casson fluid model is one of the non-Newtonian fluid models depends on
the intuitive conduct of solid phase suspension and liquid phase suspension. In
this model, yield stress is dominant as compared to shear stress. In addition,
a material having features of Casson fluid may reflect solid characteristics when
shear stress is significantly smaller in contrast to yield stress. The examples of
the Casson fluids are human blood, jelly, honey, soup and concentrated fruit
juices. Mukhopadhyay [17] demonstrated the non-Newtonian fluid flow over
a nonlinearly stretching surface. Ramesh and Devakar [18] studied three fun-
damental flows of an incompressible Casson fluid between parallel plates. They
found the analytical solutions of Couette, generalized Couette and Poiseuille
flows under slip boundary conditions. The effects of MHD on the blood flow,
when blood is represented as a non-Newtonian fluid, over a horizontal cylinder
were studied by Farhad Ali et al. [19]. Subba Rao Annasagaram et al. [20]
examined the boundary layer flow of a hydromagnetic, non-Newtonian nanofluid
flow over a vertical cone with partial slip. Lie group transformation on magne-
tohydrodynamic double-diffusion convection of a non-Newtonian nanofluid over
a vertical stretching or shrinking surface was made by Pal and Roy [21]. Af-
terward, various studies were made on Casson fluid by different researchers by
considering distinct physical effects; one can assess the concerned literature in
[22–27]. The first-order, 1.5-order and second-order slip models [28] have not yet
been discussed elaborately in the existing literature. Moreover, these models are
considered with the progress of micro/nano technologies, as the measurement
capacities of micro/nanoscale gadgets are every now and again stretched to the
furthest reaches of altogether smaller than the mean free way of gas particles, i.e.,
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high Knudsen number gas flows. Regular cases are gas flows inside nanotubes,
and air oil of head-plate interface of circle drives to say only a couple.

To the author’s knowledge, no studies have been reported on effects of Cas-
son fluid flow and aligned magnetic field on steady two-dimensional flow over
a moving extensible surface with velocity slip and carbon nanotubes. The main
objective of the present paper is to analyze the influences of an aligned mag-
netic field on the boundary layer flow of a Casson fluid over a stretching sheet in
the presence of carbon nanotubes with velocity slip effect. The governing non-
linear momentum and thermal boundary layer equations are transformed into
a system of ordinary differential equations using similarity transformation. The
obtained coupled non-linear differential equations are solved by a fourth-order
R-K method along with shooting technique. The numerical values are obtained
for the skin friction coefficient and local Nusselt number as well as the velocity
and temperature profiles.

2. Mathematical formulation

Consider a two-dimensional, steady, laminar, aligned magnetic flow of an
electrically conducting and incompressible Casson fluid over a sheet coinciding
with the plane y < 0, where the flow is confined to y > 0. Further, the extensible
sheet occupies the negative x-axis and is moving continually in the positive x -
direction with a velocity us(x). The sheet somehow disappears in a sink that
is located at (x, y) = (0, 0). Furthermore, it is assumed that the surface of
the sheet is heated to a variable temperature TW (x), which is higher than the
ambient temperature T∞, the aligned magnetic field B0(x) is applied normal to
the surface, with an acute angle α and it is fixed relative to the nanofluid, and
induced magnetic field is assumed to be small, this implies a small magnetic
Reynold number (Re)m = µ0σU0x0 � 1, where µ0 is the magnetic permeability,
σ is the electrical conductivity of nanofluid, and U0, x0 are the characteristic
velocity and reference length scales, respectively, and there is no applied voltage
which implies the absence of an electrical field. We have considered two kinds
of carbon nanotubes, namely SWCNTs and MWCNTs, to be used with water
as the base fluid. The thermophysical properties of the nanofluids are given in
Table 1.

The rheological equation for the incompressible flow of a Casson fluid is
given by

τij =

{
2
(
µB + py/

√
2π
)
eij , π > πc,

2
(
µB + py/

√
2πc
)
eij , π < πc.

Here π = eijeij and eij are the (i, j)-th component of the deformation rate, µB
is the plastic dynamic viscosity of the non-Newtonian fluid, py is the yield stress
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Table 1. Thermophysical properties of base fluids and CNT’s.

Physical properties
Base fluids Nanoparticles

water SWCNT MWCNT
ρ [kg/m3] 997 2600 1600

Cp [J/(kg ·K)] 4179 425 796
k [W/(m ·K)] 0.613 6600 3000

of the fluid, π is the product of the component of deformation rate with itself,
and πc is a critical value of this product based on the non-Newtonian model.

2.1. Flow analysis

The governing equations of the flow are given by

∂u

∂x
+
∂v

∂y
= 0,(2.1)

u
∂u

∂x
+ v

∂u

∂y
= υnf

(
1 +

1

β

)
∂2u

∂y2
− σB2

0 (x)

ρnf
sin2 α u,(2.2)

with the boundary conditions

(2.3)
u = us(x) + Uslip, v = 0 at y = 0,

u = 0, as y →∞, u→ 0, as x→ −∞,

where (x, y) denotes the Cartesian coordinates along the sheet, u and v are the
velocity components of the nanofluid along the x and y-axes, respectively, νnf is
the kinematic viscosity of nanofluid, ρnf is the effective density of the nanofluid,
β is the Casson fluid parameter

(
β = µB

√
2π/py

)
, and σ is the electrical con-

duction. These nanofluid quantities are defined as

(2.4)

µnf =
µf

(1− φ)2.5
, vnf =

µnf
ρnf

, ρnf = (1− φ) ρf + φρCNT,

αnf =
knf

(ρCp)nf
,

knf
kf

=
(1− φ) + 2φ kCNT

kCNT−kf ln
kCNT+kf

2kf

(1− φ) + 2φ
kf

kCNT−kf ln
kCNT+kf

2kf

,

where φ is the solid volume fraction, µnf is the effective dynamic viscosity, ρnf
is the effective density, µf is the dynamic viscosity, ρf and ρs are the densities,
knf is the thermal conductivity of nanofluid, kf and kCNT are the thermal con-
ductivities of the base and carbon nanotubes respectively, us(x) is considered in
the form (Kuiken [15]):

(2.5) us(x) =

(
x0
|x|

)n
U0, n > 0.
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Uslip is consider in the form (Wu [28]):

(2.6) Uslip =
2

3

(
3− αml3

αm
− 3

2

1− l2

Kn

)
λm

∂u

∂y

− 1

4

[
l4 +

2

K2
n

(
1− l2

)]
λ2m

∂2u

∂y2
= A

∂u

∂y
+ C

∂2u

∂y2
.

To convert the nonlinear partial differential equations into ordinary nonlinear
differential equations, we introduce the self-similarity variables in the following
form:

(2.7)

Tw(x) = T∞ + T0

(
x0
|x|

)m
, B(x) = B0

(
x0
|x|

)(n+1)
2

,

η = y

(
us

2vf |x|

)1/2
, f(η) =

ψ

(2vfus |x|)1/2
,

θ(η) =
T − T∞
Tw − T∞

,

where T0 is the characteristic temperature, B0 is the uniform magnetic field,
η is the similarity variable, f(η) is the dimension less stream function, θ(η) is
the dimensionless temperature, and ψ is the stream function which is defined
by u = ∂ψ

∂y and v = −∂ψ
∂x . The above expression also satisfies the continuity

Eq. (2.1). By using Eqs. (2.4)–(2.7), the Eq. (2.2) reduced to:

(2.8)
1

(1− φ)2.5

(
1 +

1

β

)
f ′′′ +

(
1− φ+ φ

ρCNT

ρf

)
[
(n− 1) ff ′′ − 2nf ′2

]
− 2M sin2 αf ′ = 0,

and the transformed boundary conditions are

(2.9)
f(0) = 0, f ′(0) = 1 + λf ′′(0) + δf ′′′(0), at η → 0,

f ′(η)→ 0 as η →∞,

where λ > 0 and δ < 0 are the first-order and second-order velocity slips,
respectively, and M = σfB

2
0x0/ρfU0 is the magnetic parameter.

2.2. Heat transfer formulation

The boundary layer energy equation is given by

(2.10) u
∂T

∂x
+ v

∂T

∂y
=

knf
(ρCp)nf

∂2T

∂y2
− 1

(ρCp)nf

∂qr
∂y

.
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Thermal radiation is simulated using the Rosseland diffusion approximation, and
in accordance with this, the radiative heat flux qr is given by

(2.11) qr = −4σ∗

3k∗
∂T 4

∂y
,

where k∗ is the Rosseland mean absorption coefficient and σ∗ is the Stefan-
Boltzmann constant. If the temperature differences within the mass of blood
flow are sufficiently small, then Eq. (2.11) can be linearized by expanding T 4

into Taylor’s series about T∞, and neglecting higher-order terms, we obtain

(2.12) T 4 ∼= 4T 3
∞T − 3T 4

∞.

Therefore, Eq. (2.10) becomes

(2.13) u
∂T

∂x
+ v

∂T

∂y
=

knf
(ρCp)nf

∂2T

∂y2
− 16σ∗T 3

∞
3k∗ (ρCp)nf

∂2T

∂y2
,

with the corresponding boundary conditions

(2.14)
T = TW (x), at y = 0,

T → T∞ as y →∞, x→ −∞,

where TW is the wall temperature. By using self-similarity transformations of
Eqs. (2.4)–(2.7), Eq. (2.13) is reduced to

(2.15)
1

Pr

(
(1−φ)+φ

(ρCp)CNT

(ρCp)f

)(
knf
kf

+
4

3
Nr
)
θ′′ + (n − 1)fθ′ − 2mθf ′ = 0,

and the transformed boundary conditions are

(2.16) θ(0) = 1 at η → 0, θ(η)→ 0 as η →∞,

where Pr = νf (ρCp)f/kf is the Prandtl number and Nr = 4σ∗T 3
∞/k

∗kf is the
radiation parameter. In this study, the quantities of practical interest are skin
friction coefficient Cf and local Nusselt number Nu, which are defined as

(2.17) Cf =
τw

ρfu2s/2
, Nu =

xqw
kf (Tw − T∞)

,

where τw and qw are the skin friction or the shear stress, and heat flux from the
surface, respectively which are defined as

(2.18) τw = µnf

(
∂u

∂y

)
y=0

, qw = −knf
(
∂T

∂y
+ qr

)
y=0

.
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Substituting Eq. (2.7) into (2.17) and (2.18), we obtain

(2.19)

Re1/2x Cf =
√

2
µnf
µf

(
1 +

1

β

)
f ′′(0),

Re−1/2x Nu = − 1√
2

(
knf
kf

+
4

3
Nr
)
θ′(0),

where Rex = us|x|
νf

is the local Reynolds number based on the stretching velocity
us(x).

3. Numerical method for solution

Equations (2.8) and (2.15) along with boundary conditions (2.9) and (2.16)
form a two-point boundary value problem. These equations are solved using the
fourth-order R-K method along with shooting technique, by converting them to
an initial value problem. For this, we transform the non-linear ordinary differ-
ential Eqs. (2.8) and (2.15) to a system of first-order differential equations as
follows:

(3.1)

f ′ = z, z′ = p,

p′=−
(
β(1−φ)2.5

1+β

){(
1−φ+φ

ρCNT

ρf

)[
(n−1) fp−2nz2

]
−2M sin2 α z

}
,

θ′ = q, a =

(
(1− φ) + φ

(ρCp)CNT

(ρCp)f

)
,

b =

(
knf
kf

+
4

3
Nr
)
,

(3.2) q′ = −pr
ab

((n− 1)fq − 2mθz) .

The boundary conditions (2.9) and (2.16) becomes

(3.3)
f(0) = 0, f ′(0) = 1 + λω1 + δω2, ω1 = f ′′(0),

ω2 = f ′′′(0), θ(0) = 1.

In order to integrate Eqs. (3.1) and (3.2) as initial value problem, we require
values of p(0), i.e., f ′′(0), q(0), i.e., θ′(0). However, no such values are given
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at the boundary. So the suitable guess values for f ′′(0) and θ′(0) are chosen,
and the integration is carried out. The most important factor of this package is
to choose an appropriate finite value of η∞. In order to determine η∞ for the
boundary value problem, start with some initial guess values for some particular
set of physical parameters to obtain f ′′(0) and θ′(0). The solving procedure is
repeated with another value of η∞ until two successive values of f ′′(0) and θ′(0)
differ only by the specified significant digit. The last value of η∞ is finally chosen
to be the most appropriate value of the η∞ for that particular set of parameters.
The value of η∞ may change for another set of physical parameters. Once the
finite value of η∞ is determined, then the integration is carried out. Compare
the calculated values for f ′ and θ at η = 30 (for example) with the boundary
conditions f ′′(30) = 0 and θ′(30) = 0 and adjust the estimated values f ′′(0) and
θ′(0), to give a better approximation to the solution. We take the series values for
f ′′(0) and θ′(0). The above procedure is repeated until the results up to desired
degree of accuracy 10−6 are obtained.

4. Results and discussions

Figures 1–5 depict the dimensionless stream function f(η), velocity profiles
f ′(η), shear stress f ′′(η) and temperature profiles θ(η) in SWCNT and MWCNT
for various values of magnetic parameter M , nanoparticle volume fraction φ,
first-order velocity slip parameter λ, aligned angle α, second-order velocity slip
parameter δ. Figure 1 shows the dimensionless stream function f(η), velocity
profiles f ′(η), shear stress f ′′(η) and temperature profiles θ(η) for various values
of the magnetic parameter M for Newtonian and non-Newtonian fluids. The
dimensionless stream function f(η) and velocity profiles f ′(η) decrease and shear
stress f ′′(η) and temperature profiles θ(η) increase as the magnetic parameterM ,
increases for both Newtonian and non-Newtonian fluids. From these figures, we
noticed that the behaviors atM = 3.0 for the non-Newtonian fluid andM = 2.0
for the Newtonian fluid are almost the same, and also the non-Newtonian fluids
the same rapidly increase compare to the Newtonian fluids.

The effect of nanoparticle volume fraction φ on the dimensionless stream
function f(η), velocity profiles f ′(η), shear stress f ′′(η) and temperature profiles
θ(η) are shown in Fig. 2. Here, we notice that the dimensionless stream function
f(η), velocity profiles f ′(η) and temperature profiles θ(η) increase and the shear
stress f ′′(η) decreases as the nanoparticle volume fraction φ increases. From these
figures, we observed that the behavior of φ = 0.3 for the Newtonian fluid and
φ = 0.2 for the non-Newtonian fluid are slightly different, and also the Newtonian
fluids rapidly increase compared to the non-Newtonian fluids for the profiles f(η),
f ′(η) and f ′′(η) and the reverse trend is observed by the profile θ(η). Figure 3
displays the dimensionless stream function f(η), velocity profiles f ′(η), shear
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Fig. 1. The dimensionless stream function f(η), velocity profiles f ′ (η), and shear stress f ′′ (η),
temperature θ (η) for different values of M .

stress f ′′(η) and temperature profiles θ(η) for various values of aligned angle α.
The dimensionless stream function f(η) and velocity profiles f ′(η) decrease and
shear stress f ′′(η) and temperature profiles θ(η) increase as the aligned angle α
increases. From these figures, we observed that the behavior of α = π/3 for the
non-Newtonian fluid and α = π/4 for the Newtonian fluid are almost the same
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Fig. 2. The dimensionless stream function f(η), velocity profiles f ′ (η), and shear stress f ′′ (η),
temperature θ (η) for different values of φ.

and also the non-Newtonian fluids rapidly increase compared to the Newtonian
fluids.

The effect of second-order velocity slip parameter δ on the dimensionless
stream function f(η), velocity profiles f ′(η), shear stress f ′′(η) and temperature
profiles θ(η) are shown in Fig. 4 for both SWCNT and MWCNT. Here, we notice
that the dimensionless stream function f(η) and velocity profiles f ′(η) increase
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Fig. 3. The dimensionless stream function f(η), velocity profiles f ′ (η), and shear stress f ′′ (η),
temperature θ (η) for different values of α.

and shear stress f ′′(η) and temperature profiles θ(η) decrease as the second-
order velocity slip parameter δ increases. From these figures, we observed that
the non-Newtonian fluids rapidly increase compared to the Newtonian fluid for
the profiles f(η), f ′(η), θ(η), and f ′′(η). Figure 5 displays the dimensionless
stream function f(η), velocity profiles f ′(η), shear stress f ′′(η) and temperature
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Fig. 4. The dimensionless stream function f(η), velocity profiles f ′ (η), and shear stress f ′′ (η),
temperature θ (η) for different values of δ.

profiles θ(η) for various values of the first-order velocity slip parameter λ. The
dimensionless stream function f(η) and velocity profiles f ′(η) decrease and shear
stress f ′′(η) and temperature profiles θ(η) increase as the first-order velocity slip
parameter λ increases. From these figures, we observed that the non-Newtonian
fluids rapidly increases in comparison to the Newtonian fluids.
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Fig. 5. The dimensionless stream function f(η), velocity profiles f ′ (η), and shear stress f ′′ (η),
temperature θ (η) for different values of λ.

The thermophysical properties of base fluids and carbon nanotubes are shown
in Table 1. Table 2 shows the validation of the present results with the with
the results in published papers. We found the reasonable agreement. Table 3
displays the change in physical quantities at various parameters. It is noticed
that the increasing values of magnetic parameter M , aligned angle α, velocity
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Table 2. Validation of the present results for f ′′(0) when M = φ = λ = δ = 0.

n Liao [14] f ′′(0) Kudenatti et al. [16] f ′′(0)n−1/2 Present f ′′(0)
0.1 −0.215052 −0.21510
0.3 −0.519994 −0.52000
0.5 −0.744394 −0.74444
0.7 −0.926891 −0.92690
0.9 −1.083447 −1.08340
1.5 −1.19485 −1.19490
2.5 −1.22896 −1.22900
5.0 −1.25523 −1.25520

10.0 −1.26849 −1.26850
100.0 −1.28048 −1.28050

Table 3. Numerical values of skin friction coefficient R1/2
x Cf

and local Nusselt number R−1/2
x Nu.

M φ λ δ α n Nr
SWCNT MWCNT

R
1/2
x Cf R

−1/2
x Nu R

1/2
x Cf R

−1/2
x Nu

1.0 0.2 1.0 −1.0 π/4 0.2 0.7 −1.096690 11.716084 −1.102909 11.458016
1.5 0.2 1.0 −1.0 π/4 0.2 0.7 −1.163596 10.713106 −1.169159 10.475353
1.0 0.4 1.0 −1.0 π/4 0.2 0.7 −1.960473 17.380581 −1.972537 17.017411
1.0 0.2 1.5 −1.0 π/4 0.2 0.7 −0.959335 10.919137 −0.963641 10.671861
1.0 0.2 1.0 −0.8 π/4 0.2 0.7 −1.147390 11.996775 −1.152865 11.727257
1.0 0.2 1.0 −1.0 π/2 0.2 0.7 −1.194752 9.913679 −1.199450 9.696286
1.0 0.2 1.0 −1.0 π/4 0.4 0.7 −1.121608 11.285340 −1.124666 11.094323
1.0 0.2 1.0 −1.0 π/4 0.2 0.9 −1.096690 11.949379 −1.102909 11.702041

power index n, and radiation parameter Nr depreciate the skin friction coefficient
and Nusselt number for both SWCNT and MWCNT. However, increasing the
value of radiation parameter does not show a significant influence on the skin
friction coefficient for both cases (SWCNT and MWCNT) and there is a slight
increment on the Nusselt number for both cases. Increasing the values of second-
order velocity slip parameter δ and nanoparticle volume fraction φ decreases the
skin friction coefficient, and the reverse trend is observed for the Nusselt number.

5. Conclusion

The present paper analyzes the influences of the aligned magnetic field on
the boundary layer flow of a Casson fluid over a stretching sheet in the presence
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of carbon nanotubes with velocity slip effect. The governing partial differential
equations are converted into ordinary ones by a similarity transformation, and
then they are solved numerically by using the fourth-order R-K method along
with shooting technique. The influence of the parameters M , φ, α, δ and λ on
the dimensionless stream function f(η), velocity profiles f ′(η), shear stress f ′′(η)
and temperature profiles θ(η) is presented. The numerical values are obtained
for the skin friction coefficient and local Nusselt number as well as the velocity
and temperature profiles:

1) f(η) increases with increasing the nanoparticle volume fraction φ and
second-order velocity slip parameter δ whereas the reverse trend is ob-
served for the magnetic parameter M , first-order velocity slip parameter
λ, and aligned angle α.

2) f ′(η) and f(η) reduce for the non-Newtonian fluid compare to Newtonian
fluid by increasing the M . f ′′(η) and θ(η) increase for the Newtonian fluid
in comparison to parameter the non-Newtonian fluid by increasing the M .

3) f ′(η) decreases with increasing the magnetic parameter M , first-order ve-
locity slip parameter λ and aligned angle α. f ′(η) increases with increasing
the nanoparticle volume fraction φ and second-order velocity slip parame-
ter δ.

4) θ(η) increases with increasing the magnetic parameter M , nanoparticle
volume fraction φ first-order velocity slip parameter λ, aligned angle α
whereas the reverse trend is observed for the second-order velocity slip
parameter δ.

5) The Nusselt number is greatly influenced by the nanoparticle volume frac-
tion.

6) Increasing the value of the radiation parameter does not show a significant
influence on the skin friction coefficient.
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