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It is the aim of this work to develop and extend the theory of undamageable materials
to graphene. An undamageable material is a material where the value of the damage variable
remains zero throughout the deformation process. It is anticipated that the constitutive equa-
tions for undamageable graphene can be modeled with differential equations for the case of
graphene. The equations are solved for three cases: n = 1, n = 2, and the general case of n.
It is hoped that undamageable graphene can be achieved in the laboratory in the near future
when the manufacturing technology advances so as to produce such materials.
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1. Introduction

The theory of undamageable materials has been developed recently by Voyia-
djis and Kattan [40, 41, 43, 45]. This theory has been developed within the
framework of continuum damage mechanics. Continuum damage mechanics has
advanced rapidly since the early work of Kachanov [13]. In particular, ad-
vances in damage has been introduced by many authors with important insights
and developments in continuum damage (Kachanov [13], Kattan and Voyia-
djis [15–17], Krajcinovic [18], Lee et al. [22], Sidoroff [31], Voyiadjis and
Kattan [33, 35–37]). Further research along this topic was undertaken later by
Kattan and Voyiadjis [14], Ladeveze and Lemaitre [19], Voyiadjis et al.
[47], Voyiadjis and Kattan [38, 39, 42, 44].

Further developments in damage mechanics appeared rapidly in the past few
years (Celentano et al. [5], Doghri [9], Hansen and Schreyer [10], Kattan
and Voyiadjis [14, 15], Ladeveze et al. [20], Lee et al. [22], Lubineau [27],
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Lubineau and Ladeveze [28], Luccioni and Oller [29], Rice [30], Voyiad-
jis [32], Voyiadjis and Kattan [34, 35]). Basaran and Yan [1] and Basaran
and Nie [2] used an alternate approach to damage characterization based on an
entropy generation rate as a damage metric rather than the damage potential
surface. Practical examples of elastic stiffness degradation in highly jointed rock
masses are given by Cai and Horii [3].

Research continued in damage mechanics by several researchers who applied
the concept to other topics: damage and elasto-plastic models (Chaboche [6],
Kattan and Voyiadjis [14, 15], Ladeveze and Lemaitre [19], Ladeveze
et al. [20], Lee et al. [22], Voyiadjis [32], Voyiadjis and Kattan [34, 35],
Voyiadjis et al. [48]), damage and elasto-viscoplastic models (Chaboche [7],
Lemaitre and Chaboche [25]), damage and continuum damage models
(Voyiadjis and Kattan [33]), and coupled elasto-plastic damage models (Chow
and Jie [8], Lemaitre [23, 24]). The damage variable or damage tensor repre-
sents the various types of damages at the micro-scale level such as micro-cracks,
micro-voids, and micro-cavities (Lubarda and Krajcinovic [26], Voyiadjis
and Kattan [33]). Some researchers postulate the use of two independent dam-
age variables to accurately describe the case of isotropic damage (Cauvin and
Testa [4], Ju and Chen [11, 12]).

Within the framework of continuum damage mechanics, the concept of the
Representative Volume Element (RVE) is used where discontinuities such as
micro-cracks and micro-voids are not considered at all. Thus macroscopic in-
ternal variables are used to lump the effect of all damages. As a result of this
concept, a thermodynamically consistent formulation is obtained (Hansen and
Schreyer [10], Kattan and Voyiadjis [16, 17], Voyiadjis et al. [46]).

In an undamageable material the value of the damage variable remains zero
throughout the deformation and damage process. In this way the material cannot
be damaged under any loading condition whatsoever. Thus it is given the name
undamageable material. It has been proved by Voyiadjis and Kattan [40, 41,
43, 45] that the value of the damage variable remains zero during the loading
stage.

The constitutive equations for undamageable materials have been derived
mathematically based on differential equations. There is a parameter n that in-
creases from 1 for linear elastic materials to infinity for undamageable materials.
The value of the damage variable is zero when n equals infinity (Voyiadjis and
Kattan [40, 41, 43, 45]).

It is the aim of this work to extend the theory of elastic undamageable mate-
rials to graphene. It is noted that graphene is a very important material used in
the industry today. Developing the theory of undamageable graphene is possible
using differential operators. The differential equations have been solved for three
cases: n = 1, n = 2, and the general case of n.
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Undamageable graphene is a hypothetical material that does not exist today
but may lead the scientists to certain material parameters that are needed to
capture this behavior. It is hoped that the manufacturing technology will ad-
vance in the near future so as to produce such materials. Once undamageable
materials are produced, it will be easy to follow this up with the production of
undamageable graphene.

The current work lays the foundation for the theory of elastic undamageable
graphene. Since the constitutive equations for undamageable materials resem-
ble those of rubber and biological tissue, it is anticipated that undamageable
materials, and in particular undamageable graphene, will have rubber-like or
biological-like components.

2. What is meant by an undamageable material?

Some elaboration is given on the new concept of undamageable materials.
These hypothetical materials were proposed recently by Voyiadjis and Kattan
[40, 41, 43, 45]. These types of material compare with rubber materials and
biological tissue. The authors also made comparisons between undamageable
materials and various nonlinear elastic materials.

Undamageable materials are proposed and designed in such a way so as
to maintain a zero value for the damage variable throughout the deformation
process. This formulation was presented by Voyiadjis and Kattan [40, 41, 43,
45] in great detail within the concept of continuum damage mechanics. Thus,
it can be seen that undamageable materials are desirable since they cannot be
damaged at all. It is hoped that the manufacturing technology will reach a stage
in the future where the realization of this type of material can be achieved.

To show that such materials maintain a zero value of the damage variable
(when n → ∞) throughout the deformation process, we need to modify the
classical definition of the effective stress to become as follows:

(2.1) σ =
σ

n
√

1− ϕ
,

where ϕ is the damage variable taking values between 0 and 1, and n is the same
exponent used in the expressions of the elastic strain energy below. We can now
perform the following trick when n approaches infinity:

(2.2) σ =
σ

n
√

1− ϕ
=

σ

(1− ϕ)1/n
=

σ

(1− ϕ)1/∞
=

σ

(1− ϕ)0
=
σ

1
= σ.

Thus, we obtain the undamageable material in this case. In their previous
publications detail, Voyiadjis and Kattan [40, 41, 43, 45] presented the con-
cept of undamageable materials using the definition of the damage variable in
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terms of elastic stiffness degradation. We have now supported that formulation
by presenting the concept of undamageable materials using a slightly modified
form of the effective stress basesd on the cross-sectional area reduction as shown
in Eqs. (2.1) and (2.2). It should be noted that Eq. (2.1) is the road that leads
to Eq. (2.2) and undamageable materials.

The authors need to clarify the distinction between Eqs. (2.1) and (2.2).
It is Eq. (2.2) that describes undamageable materials. It is the case when n
approaches infinity when one obtains the undamageable material. Again Eq. (2.1)
is the road that leads to Eq. (2.2) and undamageable materials. Furthermore the
modification that was made to the equation of effective stress to obtain Eq. (2.1)
is not arbitrary. There is a formal and consistent derivation of Eq. (2.1) that
appears in the authors’ previous work [42]. According to the proof one starts
with the expression of the higher order elastic strain energy from and proceeds
to derive Eq. (2.1). Equation (2.1) is not a choice but is the result of a formal
derivation. The value of the effective stress remains unchanged irrespective of
the value of the damage variable – this results from the infinity in Eq. (2.2) and
applies only to Eq. (2.2). It does not apply to Eq. (2.1). It is hoped that this
explanation will remove any misunderstandings between Eqs. (2.1) and (2.2).

3. Theoretical formulation

The elastic constitutive relation for graphene can be written in the following
form:

(3.1) σ = Eε+Dε2,

where σ is the stress, ε is the strain, E is the elastic modulus (Young’s modu-
lus), and D is the third order elastic stiffness. Equation (3.1) has been verified
experimentally by Lee et al. [21]. It should be noted that for graphene, while E
has a positive value, D has a negative value.

The elastic strain energy U is obtained from the stress using the following
relation:

(3.2) U =

ˆ
σ dε.

Substituting for σ from Eq. (3.1) into Eq. (3.2), one obtains the following
expression for the elastic strain energy:

(3.3) U =
1

2
Eε2 +

1

3
Dε3.

Equation (3.3) for the elastic strain energy of graphene can be re-written as
follows:

(3.4) U =
1

2
σ∗ ε,
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where σ∗ is given by:

(3.5) σ∗ = Eε+
2

3
Dε2.

It should be noted that σ∗ appears in instead of σ in the expression of U of
Eq. (3.4). Consequently, the usual strain energy function U = 1

2σ ε still applies
for graphene but is slightly changed, as shown in Eq. (3.2).

In order to develop the theory of undamageable graphene, one needs to use
higher order energy expressions like 1

2σ ε
2, 1

2σ ε
3, . . . , 1

2σ ε
n, where n is a positive

integer that goes to infinity. One now considers first the case when n = 1.

Case n = 1. Consider the following expression for the stress σ:

(3.6) σ = Ef ′(ε) + αDf(ε),

where f(ε) is an unknown function of the strain, and α is a constant. In the case
of graphene, f(ε) = 1

2ε
2 and α = 2.

Starting with Eq. (3.6), one proceeds with the following long derivation.
Substituting Eq. (3.6) for σ into Eq. (3.2) (this is valid for the case n = 1), one
obtains the following expression for the elastic strain energy for this case:

(3.7) dU =
[
Ef ′(ε) + αDf(ε)

]
dε.

However, U = 1
2σ ε, substituting into this expression Eq. (3.6) for σ, and

differentiating the results, one obtains the following expression for dU :

(3.8) dU =
1

2

[
Ef ′(ε) + αDf(ε)

]
dε+

1

2

[
Ef ′′(ε) + αDf ′(ε)

]
ε.

Solving Eqs. (3.7) and (3.8) for dU and re-arranging the terms, one obtains:

(3.9)
Ef ′′(ε) + αDf ′(ε)

Ef ′(ε) + αDf(ε)
=

dε
ε
.

The above is a second-order differential equation in f(ε). Subject to the
initial condition that when ε = 0, f(ε) = 0, one solves the above equation by
integrating both sides to obtain:

(3.10) f(ε) =
Cε

αD
− CE

(αD)2

(
1− e−αDε/E

)
,

where C is the integration constant. Considering the special case when ε is small,
one uses the Taylor series expansion of the exponential function as follows:

(3.11) ex = 1 + x+
x2

2
+ ...
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Taking only the first two terms in the expansion, one applies this to the
exponential function in Eq. (3.10) to obtain:

(3.12) f (ε) ≈ 1

2

ε2

E
.

It should be noted that the approximate expression obtained above is the
correct expression for f(ε) and resembles that of the elastic strain energy function
for linear elastic materials. Next the case n = 2 is solved.

Case n = 2. In this section, the case when n = 2 is solved. Following the
same procedure in the previous section, and starting with Eq. (3.6), one obtains
the expression for dU as shown in Eq. (3.7). However, the change now is in the
elastic strain energy function. One uses U in the form U = 1

2σ ε
2. Substituting

into this expression the formula for σ from Eq. (3.6) and differentiating the
result, one obtains the following expression for dU :

(3.13) dU =
1

2

[
Ef ′(ε) + αDf(ε)

]
ε dε+

1

2

[
Ef ′′(ε) + αDf ′(ε)

]
ε2.

Equating Eqs. (3.7) and (3.13) for dU and rearranging the terms, one obtains
the following differential equation:

(3.14)
Ef ′′(ε) + αDf ′(ε)

Ef ′(ε) + αDf(ε)
=

2(1− ε)
ε2

dε.

The above is a second-order differential equation in f(ε). Using the MATLAB
Symbolic Math Toolbox, one solves the above differential equation to obtain the
following expression:

(3.15) f(ε) = −αDε
E

ˆ
eαDε/E e−2/ε

Eε2
dε+ Ce−αDε/E ,

where C is a constant of integration. Substituting the expression for f(ε) from
Eq. (3.15) into the expression for σ of Eq. (3.6), one can obtain the elastic
constitutive equation for graphene when n = 2. Next the case for general n is
solved.

General n. In this section, the case for the general value of the exponent n
is solved. Starting again with Eq. (3.6) for the stress, and after differentiating it,
one obtains the expression for dU in Eq. (3.7). However, the change now is in
the elastic energy function. One uses a general expression for U as U = 1

2σε
n.
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Substituting into this expression the equation for the stress from Eq. (3.6), and
differentiating the result, one obtains the following expression for dU :

(3.16) dU =
n

2

[
Ef ′ (ε) + αDf(ε)

]
εn−1 dε+

1

2

[
Ef ′′(ε) + αDf ′(ε)

]
εn.

Equating Eqs. (3.7) and (3.16) and rearranging the terms, one obtains the
following differential equation in f(ε):

(3.17)
Ef ′′(ε) + αDf ′(ε)

Ef ′(ε) + αDf(ε)
=

2
(
1− n

2 ε
n−1)

εn
dε.

The above is a second-order differential equation in f(ε) for graphene for any
general value of the exponent n. In order to solve the general differential equation
of Eq. (3.17) one resorts to the MATLAB Symbolic Math Toolbox. The solution
of the general differential equation is obtained as follows:

(3.18) f(ε) = −αDε
E

ˆ
e
αDε
E e

−2

(n−1)εn−1

Eεn
dε+ Ce

−αDε
E ,

where C is a constant of integration. One then substitutes Eq. (3.18) into the
expression for σ of Eq. (3.6) to obtain the general constitutive equation for
graphene for any value of the exponent n. As n goes to infinity we obtain the
hypothetical material called undamageable graphene.

4. Conclusion

In this work the equations of undamageable graphene are derived. The deriva-
tion follows the theory of undamageable materials presented in several papers
by the authors previously. The differential equations for undamageable graphene
are derived and solved for three cases. It should be noted that undamageable
graphene is a hypothetical material currently and may be manufactured in the
future once the technology is developed. The main property of undamageable
graphene is that this material cannot be damaged under any type of loading.

The authors solve three cases. Indeed the two cases n = 1 and n = 2 will
not lead to undamageable materials. But they are simple cases that can be
solved. Only case 3 leads to undamageable materials when n approaches infinity.
Furthermore, in the future the manufacturing technology might not be able to
approach infinity or even undamageable materials. However, simple cases like
n = 2, n = 5, and n = 10 might be realizable in the industry in the future.
They will be on the road that leads to undamageable materials. The equations
for n = 5 and n = 10 (or even n = 100) are obtained directly from Eq. (3.18) by
substituting the correct value of n in the equation. There is no need to derive
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these equations from scratch like what was done with the two cases n = 1 and
n = 2. As n increases the reduction in the damaged stiffness decreases which
emphasizes an understanding of the methodology to decrease in the percentage
of stiffness reduction for the same damage input.
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