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One of the factors determining comfort in buildings is the indoor air temperature of the
rooms. A control system, part of the home automation system, should stabilise air temperature
to the desired level, despite various disturbances such as the presence of random or occasional
sources of heat. Inaccurate models of the dynamics of air temperature changes in buildings
prescribe the use of robust control methods, a type of which is the sliding mode controller.
This article presents the application of a sliding mode controller (SMC) to home automation
systems, designed to control air temperature inside a building. The sliding-mode controller
makes use of sliding surfaces, which are defined by the assumed trajectory and the system
output. The control law is designed in such a way that the trajectory of the system tends to
the sliding surface from any initial point and remains on it after reaching the sliding surface.
In this article, a model at air temperature change dynamics inside a building is presented. The
modelling approach relies on the lumped-parameter methodology, in which distributed physical
properties are represented by lumped parameters (such as thermal capacity or resistance). The
model takes into account the loss of heat through conduction and ventilation, as well as internal
heat gain. The parameters of the model can be obtained easily from the thermal properties of
the construction materials. Theoretical considerations were applied in simulation experiments
and the results of these experiments confirm the performance improvement achieved by the
proposed solutions.

Key words: control systems design; sliding-mode control; building temperature dynamics;
sliding surface.

1. Introduction

The sliding mode control (SMC) is a robust method that can be successfully
used for the control of non-linear and linear systems [1, 2]. The SMC is charac-
terised by the fact that the structure of the control system may vary during the
control process. This type of control method is widely used in different applica-
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tions such as power transmission [3], position control [4] and anti-lock braking
system [5]. In this method, first of all, a proper sliding surface is defined [6] and,
then, a controller is designed aimed at deriving the system states to the defined
sliding (or switching) surface. One of the most notable features of the sliding
mode control is that after reaching the sliding mode, the closed-loop system is
stable against model parameter variations and external disturbances. The slid-
ing mode control can be designed in two types. Firstly, the linear sliding control
mode can be used for the asymptotic stabilisation of the closed-loop system.
This controller guarantees that the system state will reach the equilibrium point
in infinite time [1]. Secondly, the terminal sliding mode control is based on non-
linear, non-smooth differential equations and enables finite time convergence to
the equilibrium [7, 8]. In this paper, a modification of the terminal sliding mode
controller proposed in [9] has been applied to control the air temperature in the
buildings. The SMC method is only one of the control methods used in home
automation systems. In addition, other types of regulators are used to stabilise
indoor air temperatures such as PI controller [10] or PID controls for the dif-
ferent control areas of the heating, ventilation, and air conditioning (HVAC)
systems [11].

The main objectives of the paper are as follows:
1) Design a control law that forces the trajectory of the dynamic system from

any initial condition to the sliding surface in finite time. After reaching the
sliding surface, the trajectory of the system should remain on it.

2) Describe a general thermal model of the building. The model will be rel-
atively simple but will incorporate the major features of heat transfer dy-
namics. The parameters of the model will be easily estimated already at
the design stage of the building. The model will be prepared in a form that
allows simulating the indoor temperature dynamics in every room of the
building.

The modelling approach, which is used in this paper, is based on the well-
known heat conduction equation presented by Joseph Fourier in 1822 [12]. The
mathematical theory of heat conduction has been the topic of a great number of
publications, textbooks and monographs, such as [13] or [14] which present a very
detailed analysis of heat transfer aspects. A systematic review of the historical
development of mathematical models applied in the development of building
technology can be found in articles [15, 16]. The review with the references given
therein provides an insight into various modelling approaches, including physical
modelling, neural networks, expert systems, fuzzy logic and genetic models.

The physical phenomena of thermal conductivity are very complex and usu-
ally described by non-linear partial differential equations. These equations also
depend on time and space variables. For these reasons, it is extremely difficult
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to obtain a single complete thermal model of a building. Conversely, the math-
ematical model is crucial in the design process for control algorithms. In the
literature, we distinguish three methods frequently used to obtain and identify
an approximated thermal model of a building. The first method is called the im-
pulse response method [17, 18]. It is based on the output response of the model
if the excitation of input is a unit impulse. Under additional assumptions and
with the help of the Laplace transform, the output response of the wall to unit
impulse excitation function can be expressed as a time series.

The second method is the finite difference method. This is a numerical method
for solving partial differential equations of heat conduction [17, 18]. The finite
difference method is based on the approximation of derivatives by algebraic equa-
tions. The building wall is divided into a finite number of layers, and temperature
for each layer is computed using a set of algebraic equations.

The third method is known as the lumped parameter method (or the lumped
capacitance method). This method is based on the assumption that the transfer
of the heat flux between two spaces, which are divided by a partition (wall),
can be modelled by the equivalent electrical RC circuit [19, 20]. Resistances in
the electrical RC circuit are interpreted as thermal resistances; capacitances are
interpreted as heat capacities of the modelled elements. The physical properties
of the construction materials of the building are represented by resistors and
capacitors. The lumped parameter method describes changes in air temperature
at one (lumped) point. The mathematical model, which is obtained by using the
lumped parameter method, takes the form of linear differential equations and
can be simplified by the reduction of the number of states which are unobservable
[23]. The model can be then easily solved by analytical or numerical methods.
In this paper, a certain modification of the lumped parameter method is applied
in order to obtain a model of the building that can be used for the design of the
sliding mode controller.

The mathematical models of dynamic systems in the form of linear dif-
ferential equations with integer-order derivatives can be expanded to models
in the form of differential equations with fractional-order derivatives. Lower
prices of computers and their increasing computing capacities enable to use frac
tional-order calculus in practical solutions. More information about using
fractional-order calculus for the modelling of heat transfer processes can be found
in [24] where authors presents results of modeling the heat transfer in media and
with assumption that heat flux is dispersed. The paper [25] presents how to
implement non-integer order calculus to model one-dimensional heat transfer
process with the use of Caputo-Fabrizio operator. Practical confirmation of the
usefulness of fractional calculus for modeling dynamic changes in air temperature
can be found in [26]. The current paper is organised as follows. In the next sec-
tion, a general mathematical model for the temperature dynamics in buildings is
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introduced. In Subsec. 2.2, the design process for the sliding mode controller is
described. The following section applies the concept to an exemplary building
structure consisting of five rooms. Conclusions are presented in Sec. 4.

2. Methodology

2.1. Model description

A typical building can be considered as a collection of rooms arranged in
a specific order, with each room enclosed by walls, floor, and ceiling. A single
room usually has several windows and is accessible via doors. Let i ∈ {1, 2, . . . , n}
be the index of a room in the sample building. Let us assume that the indoor air
temperature in Ti in i-th room with volume Vi is uniform. Let us denote by Qout

i

the thermal power which is transferred out of the room (i.e., dissipated thermal
power) and by Qin

i the thermal power which is transferred into the room (i.e.,
external source of heat). Then, the temperature dynamics in the i-th room can
be described by the following equation:

(2.1) cρVi
dTi
dt

= Qin
i (t)−Qout

i (t), Ti(0) = T 0
i ,

where ρ is the density of air, c is the specific heat capacity of air, and T 0
i is the

initial temperature, t > 0.
In this paper, the applied thermal power Qin

i will denote the heat transferred
to the air through a radiator or other radiant heating devices. More generally,
the applied thermal power will consider, in addition, the heat from solar radia-
tion, as well as the heat from occupants, lights, equipment and machinery. For
simplification purposes, these heat gains are omitted from further analysis.

The overall thermal power loss from a room can be described as follows:

(2.2) Qout
i (t) = Qtc

i (t) +Qve
i (t),

where Qtc
i refers to heat loss by thermal conduction through doors, walls, ceiling,

windows etc., and Qve
i refers to heat loss by ventilation.

Heat loss by thermal conduction can be expressed as (e.g. [27])

(2.3) Qtc
i (t) =

n∑
j=−1

Ai,jUi,j(Ti(t)− Tj(t)),

where Ui,j is the resultant overall heat transfer coefficient that corresponds to
Ai,j , Ai,j is the area of exposed surface between i-th and j-th room, the room
indexed as j = 0 stands for the outer space, and j = −1 stands for the earth. The
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resultant heat transfer coefficient Ui,j can be calculated as a weighted average of
the elements that the surface Ai,j is composed of, that is [28]

(2.4) Ui,j =

∑
k

Ai,j,kUi,j,k∑
k

Ai,j,k
,

where
∑
k

Ai,j,k = Ai,j .

The loss of heat due to ventilation with heat recovery can be expressed as
(e.g. [29])

(2.5) Qve
i (t) = (1− β)cρqi (Ti(t)− T0(t)) ,

where qi denotes air volume flow, and β stands for heat recovery efficiency.
Finally, the model of the air temperature dynamics in the building can be

expressed by Eqs (2.1)–(2.5) and written using the state space notation in the
following form:

(2.6) Eẋ(t) = Ax(t) + Bu(t) + Zz(t), x(0) = x0,

where

x(t) = [x1(t) x2(t) ... xn(t)]T ∈ Rn, xi(t) = Ti(t), i = 1, 2, ..., n,(2.7)

u(t) = [u1(t) u2(t) ... un(t)]T ∈ Rn, ui(t) = Qin
i (t), i = 1, 2, ..., n,(2.8)

(2.9)
z(t) = [z1(t) z2(t)]T ∈ R2, z1(t) = T0(t), z2(t) = T−1(t),

t > 0, x0 ∈ Rn,

(2.10) E = cρ diag(V1, V2, ..., Vn),

(2.11) A=



−
n∑
j=1

A1,jU1,j A1,2U1,2 . . . A1,nU1,n

A2,1U2,1 −
n∑
j=1

A2,jU2,j . . . A2,nU2,n

...
...

. . .
...

An,1Un,1 An,2Un,2 . . . −
n∑
j=1

An,jUn,j


−(1−β)cρ


q1

q2
...
qn

In,

(2.12) B = diag(b1, b2, ..., bn),
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bi =

1, if i-th room is equipped with a heating device,

0, otherwise,
(2.13)

Z =


A1,0U1,0 + (1− β)cρq1 A1,−1U1,−1

A2,0U2,0 + (1− β)cρq2 A2,−1U2,−1

...
...

An,0Un,0 + (1− β)cρqn An,−1Un,−1

.(2.14)

The output equations of the state space representation are based on the
measurement of sensors that relate to the air temperature in the rooms

(2.15) y(t) = Cx(t),

where

y(t) = [y1(t) y2(t) ... yn(t)]T ∈ Rn, yi(t) = Ti(t), i = 1, 2, ..., n,(2.16)

C = diag(c1, c2, ..., cn),(2.17)

ci =

1, if i-th room is equipped with a temperature sensor,

0, otherwise.
(2.18)

2.2. Synthesis of a sliding mode controller

We consider the situation where every room is equipped with a heating device,
which means that B = In. We also assume that in every room a sensor measures
indoor temperature, therefore, y(t) = x(t). Under these assumptions, we can
define the sliding surface for the system (2.6), (2.15) in the following form:

(2.19) s(t) = x(t)− xd(t),

where xd(t) is the desired trajectory. The problem is to find a control law that
guarantees the existence of the sliding mode around the defined surface (2.19).

Let us consider the following formula:

(2.20) u(t) = −B−1 (Ax(t)−Eẋd(t))−B−1S(t)zmax

− σB−1S(t)sη(t)− γB−1s(t),
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where σ > 0, γ > 0 are positive coefficients, and zmax ∈ Rn is a vector whose
elements are the upper bounds of the corresponding elements of Zz(t), that is

zmax = max
t≥0

Zz(t) ≥ 0,(2.21)

S(t) = diag
(
sgn(s1(t)), sgn(s2(t)), ..., sgn(sn(t))

)
,(2.22)

sη(t) =
[
|s1(t)|η |s2(t)|η ... |sn(t)|η

]T
,(2.23)

η is a ratio of two odd positive integers satisfying 0 < η < 1.
Theorem 2.1. The trajectory of the system (2.6) is forced by the control (2.8)
from any initial condition to the surface (2.19) in finite time and, then, remains
on it.
Proof. The proof is approached by imposing the following Lypunov function:

(2.24) V (t) = 0.5s(t)Ts(t).

The derivative of the functional V with respect to time t and along the solutions
of the system (2.6) becomes

(2.25) V̇ (t) = s(t)Tṡ(t) = s(t)T (ẋ(t)− ẋd(t))

= s(t)T
(
E−1Ax(t) + E−1Bu(t) + E−1Zz(t)− ẋd(t)

)
.

Substitution of (2.20) by (2.25) yields

(2.26) V̇ (t) = −s(t)TE−1S(t)zmax − s(t)TE−1σS(t)sη(t)

− s(t)TE−1γs(t) + s(t)TE−1Zz(t).

From (2.21) it follows that

(2.27) V̇ (t) ≤ −γλmin(E−1) ‖s(t)‖2 − σλmin(E−1) ‖s(t)‖η+1

= −2γλmin(E−1)V (t)− 2
η+1
2 σλmin(E−1)V (t)

η+1
2 .

By taking α = 2γλmin(E−1) > 0, β = 2
η+1
2 σλmin(E−1) > 0, κ = η+1

2 it can be
concluded from Lemma 2.1 that the system state will reach the sliding mode
surface in finite time calculated as follows:

(2.28) tr =
1

α(1− κ)
ln
αV (0)1−κ + β

β
,
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where

(2.29) V (0) = 0.5s(0)Ts(0).
�

Lemma 2.1 ([9, 30]). Assuming that a continuous positive-definite function V (t)
satisfies the following differential inequality

(2.30) V̇ (t) ≤ −αV (t)− βV (t)κ, ∀t≥t0 , V (t0) ≥ 0,

where α and β are positive constants, and κ is a ratio of two odd positive integers,
such as 0 < κ < 1. Then, for any given time t0, V (t) converges to zero at least
within a finite time

(2.31) tr = t0 +
1

α(1− κ)
ln
αV (t0)1−κ + β

β
.

Proof. The proof of this lemma can be found in [9].
�

3. Case study

We consider a single-family house, see Figs 1 and 2. The house consists of
five rooms, including bedroom, living-room, bathroom, kitchen, and anteroom,
see Table 1.

Fig. 1. Floor plan of the house.
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Fig. 2. 3D projection of the house.

Table 1. List of rooms with associated indexes. Earth and outer space are also considered
as rooms with special indexes: −1 and 0 respectively.

Room name Earth Outer space Bedroom Bathroom Living-room Kitchen Anteroom
Index −1 0 1 2 3 4 5

The outer walls have a thickness of 47 cm and are built with four layers:
structural clay tile (30 cm), mineral wool as an insulating material (15 cm), and
internal (1 cm) and external (1 cm) cement-lime plasters. The internal walls
have a thickness of 12 cm and are made of brick (10 cm) with 1 cm cement-lime
plaster on both sides. The roof is isolated with mineral wool of 20 cm thickness.
The building construction elements and geometry parameters are presented in
Tables 2–5. The house is equipped with a heat recovery system (with an efficiency
of 80%) and mechanical ventilation. It was assumed that air volume flow is
constant for each room. The parameters of the ventilation system are summarised
in Table 4.

Table 2. Areas of the surfaces between separated zones.

Ai,j [m2] −1 0 1 2 3 4 5

1 7.51 21.18 0 6.90 0 0 6.77

2 5.31 10.11 6.90 0 6.90 0 4.80

3 36.43 79.36 0 6.90 0 6.87 4.75

4 13.02 31.07 0 0 6.87 0 11.8

5 9.39 14.14 6.77 4.80 4.75 11.8 0
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Table 3. Resultant overall heat transfer coefficients corresponding to the surfaces Ai,j .

Ui,j [W/(m2 ·K)] −1 0 1 2 3 4 5

1 0.30 0.27 0 0.80 0 0 1.00

2 0.30 0.30 0.80 0 0.8 0 1.08

3 0.30 0.30 0 0.80 0 0.99 1.08

4 0.30 0.28 0 0 0.99 0 0.91

5 0.30 0.34 1.00 1.08 1.08 0.91 0

Table 4. Volumes of rooms and ventilation rates.

1 2 3 4 5

Vi, [m3] 18.78 13.28 91.08 32.55 23.48

qi [m3/h] 20 50 60 70 10

Table 5. Other building geometry parameters and thermal properties of building
construction elements.

Parameter Symbol Value Unit
Specific heat capacity of air c 1005 J/(kg ·K)
Density of air ρ 1.205 kg/m3

Heat recovery efficiency β 0.8 –
Surface area of exterior doors Ai,j,k 2.31 m2

Surface area of interior doors Ai,j,k 1.89 m2

Surface area of a single window Ai,j,k 1.17 m2

Surface area of a double window Ai,j,k 2.52 m2

Overall heat transfer coefficient of exterior doors Ui,j,k 0.25 W/(m2 ·K)
Overall heat transfer coefficient of interior doors Ui,j,k 0.8 W/(m2 ·K)
Overall heat transfer coefficient of a window Ui,j,k 0.9 W/(m2 ·K)

The house is equipped with a central heating system, whereby every room
has its own radiator. A thermostat unit is mounted on every radiator controlling
the flow of hot central heating water into the radiator. We assume that all radi-
ators in the house can be controlled by a central unit that implements a control
algorithm. The outdoor air and earth temperatures are measured using external
sensors. In addition, every room is equipped with a sensor that measures indoor
temperature.

The dynamics of the indoor air temperature can be described by Eq. (2.6)
with n = 5. The earth temperature is assumed to be stable at a level of 15.0◦C.
The daily profile of the outside temperature that has been used in the simulation
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experiments is presented in Fig. 3. The desired temperature profile for every room
is defined by the following function:

(3.1) xdi(t) = −2 cos

(
2π

24
(t− 4)

)
+ 20, i = 1, 2, ..., 5.

Fig. 3. Outdoor air temperature over the course of the simulation experiment.

The temperature (3.1) is given in Celsius, as well as the initial condition

x(0) = [15.0 16.0 17.0 15.0 14.0]T.

The central unit implements the sliding mode control algorithm (2.20) with
the following parameters:

σ = 100, γ = 106, η = 3/5,

zmax = 107 · [1.003 0.608 4.397 1.627 0.982]T.

Every element of the vector zmax represents heat power expressed in watts. In
addition, we take into consideration the following constraints imposed by the
radiator construction:

0 [W] ≤ u1(t) ≤ 500 [W],(3.2)

0 [W] ≤ u2(t) ≤ 500 [W],(3.3)

0 [W] ≤ u3(t) ≤ 3000 [W],(3.4)

0 [W] ≤ u4(t) ≤ 800 [W],(3.5)

0 [W] ≤ u5(t) ≤ 400 [W].(3.6)
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The sample simulation results are presented in Figs 4 and 5. The upper plots
show temperatures change during the whole simulation and the bottom plots show
temperatures change in the zoomed time window. As can be noticed, at the be-

Fig. 4. The trajectory x1 (black line) of the closed-loop system with the sliding mode controller
and the desired trajectory xd1 (grey line). The trajectory x1 represents the indoor temperature

in the bedroom. The same simulation results are shown in different time windows.

Fig. 5. The trajectory x5 (black line) of the closed-loop system with the sliding mode controller
and the desired trajectory xd5 (grey line). The trajectory x5 represents the indoor temperature

in the anteroom. The same simulation results are shown in different time windows.
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ginning of the simulation the indoor air temperature changes faster until the de-
sired temperature is reached. When this happens, the internal air temperature
changes according to the desired temperature, despite external disturbances,
such as the outside temperature. Figure 5 shows the air temperature changes in
the anteroom. It can be noticed that this temperature changes slowly before it
reaches the desired temperature xd5(t). This is due to the fact that the anteroom
has relatively the smallest radiator.

4. Conclusions

An efficient and practical way for modelling heat transfer dynamics in a build-
ing, which can be an office area, apartment house, industrial plant etc., was pre-
sented in this paper. The resulting mathematical model is represented by first-
order differential equations. The number of rooms where the indoor air temper-
ature is controlled determines the order of the dynamical model. The presented
modelling approach allows the incorporation of to incorporate various forms of
heat loss and heat gain. One of the main advantages of the such modelling ap-
proach is that the model parameters can be determined easily and uniquely from
the geometry of the building and the thermal properties of the building materi-
als. As a result, the formal identification of the model parameters is not required.
This approach leads to mathematical models that can be used for the design of
temperature control algorithms. In this paper, a proposed sliding mode controller
guarantees the existence of the sliding mode around the defined sliding surface.
The trajectory of the closed-loop system reaches the sliding surface after a finite
time and, then, remains on it. The simulation example has shown the effective-
ness of the proposed method. Numerical calculations and computer simulations
were performed in the MathWorksTM MATLABr/Simulinkr environment.
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