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In this paper the free vibrations frequencies of tapered Euler-Bernoulli beams are calcu-
lated, in the presence of an arbitrary number of rotationally and/or axially, elastically flexible
constraints. The dynamic analysis is performed by means of the so-called cell discretization
method (CDM), according to which the beam is reduced to a set of rigid bars, linked together
by elastic sections, where the bending stiffness and the distributed mass of the bars is concen-
trated. The resulting stiffness matrix and mass matrix are easily deduced, and the generalized
symmetric eingenvalue problem can be immediately solved. Various numerical comparisons
allow us to show the potentialities of the proposed approach.
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1. INTRODUCTION

The dynamic analysis of beams with continuously varying cross-section is
a classical structural problem, which nowadays is becoming more and more im-
portant, even in mechanical engineering and in aeronautic engineering.

Numerous authors have approached the analysis assuming that the beam
is sufficiently slender to be considered as an Euler-Bernoulli beam, and trying
to analytically solve the resulting fourth-order differential equation with vari-
able coefficients. Among the others, CRAVER and JAMPALA [1]| examine the free
vibration frequencies of a cantilever beam with variable cross-section and con-
straining springs; DE ROSA and AUCIELLO [2] give the exact free frequencies
of a beam with linearly varying cross-section, in the presence of generic non-
classically boundary conditions, so that all the usual boundary conditions can be
treated as particular cases; DATTA and SILL [3] give the general solution in terms
of Bessel functions, and the first eingevalue for a beam with constant width and
linearly varying height is found. In 1995 ABRATE [4] solved the differential equa-
tion for various taper laws, and also performed a numerical comparison with the
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Rayleigh—Ritz approach. GROsSI et al. [5] employed both the classical Rayleigh—
Ritz method and the optimized Rayleigh—Schmidt method to find the frequencies
of beams with constant width and varying height, and also of beams with vary-
ing width and varying height. A lot of numerical results were given, for various
non-classical boundary conditions. MoOU et al. [6] employed the exact dynamic
stiffness matrix (EDSM) to find the frequencies of circular and elliptic tapered
beams, and of beams defined by a linear-tapered section, a uniform section and
a non-linearly varying section. All the results are compared with a classical finite
element analysis. The Rayleigh-Ritz approach is used by ZHOU and CHEUNG |7]
to find the first free vibration frequencies of three different tapered beams with
various boundary conditions and truncation factors. Finally, free vibrations of
Euler-Bernoulli beams of bilinearly varying thickness are studied in [8] using:
a) the optimized Rayleigh—Ritz method, b) the differential quadrature technique
and c) the finite element approach.

Tapered beams with more complex geometry and non-classical boundary
conditions were studied by AUCIELLO et al. in [9-10]; the beam is divided into
two segments, and each segment has a different tapering law. The exact solutions
are obtained in both the above-mentioned papers, solving the corresponding
boundary value problem.

In [11-14] the dynamic stability problem of a non-prismatic beam is solved
using the Chebyshev series approximation: the method is used to solve the prob-
lem of vibration for a Euler—Bernoulli and Timoshenko beams.

In this paper a numerical approach is adopted, to find the free vibration
frequencies of Euler-Bernoulli multi-span beams with arbitrarily varying cross-
sections, in the presence of elastically flexible supports. The analysis is performed
reducing the beam to a set of rigid bars linked together by means of elastic sec-
tions (elastic cells), in which the stiffness and the mass of the beam is properly
concentrated. In this way, the structure is reduced to a system with finite num-
ber of degrees of freedom, and the global stiffness matrix and the global mass
matrix can be easily calculated. Obviously, the method can be dated back to
the first manual attempts to solve the vibration problem [15-16 e.g.|, but in
this paper its feasibility to be computerized is clearly shown, using the powerful
symbolic software Mathematica [17], and various numerical comparisons show
the method’s usefulness.

2. FORMULATION OF THE PROBLEM

Let us consider the beam in Fig. 1, with span L, Young modulus £ and mass
density p, resting on elastically flexible constraints at the ends, with rotational
stiffness kry, at left and krp at rigth, and axial stiffness kpy at left and krg at
rigth, respectively.
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Fi1c. 1. Structural system.

Moreover, let us suppose that both the moment of inertia I(z) and the cross-
sectional area A(z) vary with the abscissa z. As already said, the beam is reduced
to a set of ¢ rigid bars with length [;, connected by n = t 4+ 1 elastic cells.
Whereas the possibility to adopt different lengths for each bar is invaluable in
order to simulate rapidly varying geometries, nevertheless in the following we
shall adopt the simplest choice, for which, I; = [, ¢ = 1,...t. Moreover, the
moment of inertia I(z) and the cross-sectional area A(z) will be evaluated at
the cells abscissae, obtaining the concentrated stiffness k; = EI(z)/l and the
concentrated masses m; = pA(z)l. Both these quantities can be organized into
the so-called unassembled stiffness matrix k = diag{k;}, ¢ = 1,...n and the
unassembled mass matrix M = diag{m;}, i = 1,...n.

In this way, the structures is reduced to a classical holonomic system, with
n degrees of freedom. The n vertical displacements v; at the cells abscissae
can be assumed as Lagrangian coordinates, and they will be organized into the
n-dimensional vector v; equivantely, the vector v can be viewed as a (nx1)-di-
mensional matrix. The n — 1 rotations of the rigid bars can be calculated as
a function of the Lagrangian coordinates as follows:
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(2.1) b; = w

or, in matrix form: ¢ = Vv and V is a rectangular transfer matrix with n — 1
rows and n columns.
The relative rotations between the two faces of the elastic cells are given by:

(2.2) Y1 = ¢, Vi = ¢j — Pi1, Y = —Pn_1,

or in matrix form 1) = A¢, and A is another rectangular transfer matrix with n
rows and n — 1 columns.
The bending strain energy L. is concentrated at the cells, and is given by:

(2.3) Z ki F = qu,

In order to obtain a quadratic form of the Lagrangian coordinates it is nec-
essary to use Egs. (2.1)—(2.2):

(2.4) ﬂkalp = q)TATk Ap = 1 T(VATKAV) v
or else:
(2.5) L.= %VTKV,

where K is the assembled stiffness matrix.
The kinetic energy can be simply expressed as:

(2.6) T = ; vIMyv.
The strain energy of the axially flexible constraints at the ends is given by:
(2.7) Lrp = %kTLU%a Lrr = %kRvam
so that the assembled stiffness matrix must be modified as follows:
(2.8) K[1,1] = K[1,1] + krr, Kn,n] = K[n,n] + krg.

The presence of axially flexible intermediate supports can be similarly dealt
with. If the constraint is placed at the abscissa z;, = z; + I, and if its axial
stiffness is given by k7, its vertical displacement is given by (cf. Fig. 2):

(2.9) Vp = Vi + @lh
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Fi1G. 2. Intermediate axially and rotationally flexible supports.

and its strain energy is equal to:
1 2

The rotational stiffnesses of the constraints can be taken into account by
summing up the corresponding flexibilities with the flexibilities of the rigid bars.
For example, for the end constraints we have:

K [17 1] krL

(2.11) KL=y Kl

_ K[n,n]kgrr
N k‘RR—I—K[TL,n]'

The equation of motion can be written as:
(2.12) Mv + Kv = 0.

The resulting generalized symmetric eingevalue problem can be easily solved,
and the frequencies w? can be obtained, together with the corresponding vibra-
tion modes.

3. NUMERICAL COMPARISONS

In order to show the method’s potentialities, several numerical examples will
be examined, using a general code developed in Mathematica [17]. In this paper
we are not particularly interested in the convergence properties of the solutions,
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therefore all the examples will be performed by using a large number of cells, i.e.
n = 300.

1. As a first numerical comparison, let us consider a tapered Euler-Bernoulli
beam with cross-sectional area and moment of inertia given by the following
laws:

z 2 z 4
B AR =A(@-DF+1) =)=l (l@-DF+1)
hy by .
where o = = and Ag and Iy are the cross-sectional area and the moment
0 0

of inertia of the section at left.
The beam is constrained at both ends with elastically flexible constraints,
defined by the following non-dimensional quantities:

krrL krrL krpL? krrL?
3.2 R - = T = T = .
(3.2) "R S ) A ) 2T FEIL

This structure has been already solved in [2]| using an exact approach, and

: . . pAow?L* .
the first five non-dimensional frequencies p; = —pp e reported in
0

Table 1. With this discretization level, the discrepancies are negligible.

Table 1. Numerical comparison between the first five non-dimensional frequency
coefficients p; for 71 =T> — 0o, @ = 2.

Ry | Re p1 P2 P3 j2 Ds
0 0 3.7300 7.6302 11.4217 15.2083 18.9954
3.7300 7.6301 11.4212 15.2072 18.9932
0 0.01 3.7345 7.6317 11.4226 15.2089 18.9959
3.7345 7.6316 11.4221 15.2078 18.9937
0 01 3.7737 7.6447 11.4306 15.2147 19.0004
3.7737 7.6446 11.4301 15.2136 19.9982
0 1 4.0635 7.7619 11.5054 15.2695 19.0436
4.0635 7.7618 11.5049 15.2684 19.0114
0 10 4.7549 8.2846 11.9277 15.6221 19.3456
4.7549 8.2845 11.9272 15.6209 19.3432
1 0 3.7984 7.6803 11.4604 15.2397 19.0218
3.7984 7.6802 11.4600 15.2386 19.0195
1 01 3.8409 7.6946 11.4693 15.2461 19.0267
3.8409 7.6945 11.4688 15.2450 19.0245
1 1 3.1249 7.8105 11.5436 15.3007 19.0698
3.1249 7.8104 11.5431 15.2995 19.0676

2. The free vibration frequencies of cantilever tapered beams have been stud-
ied by ABRATE [4] using a Rayleigh—Ritz approach and an n-term approximation.
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AgL*
The non-dimensional frequencies §2; = w; pE(} are given in Table 2, for the
0
following variation law:
(3.3) 4_T_ 4y
. — == Qaz.
Ay Io

Table 2. First four non-dimensional frequency coefficients (2; for a« = 0 and

a=-1/2.
! N | Mode ABRATE [4] Hobces [19] | THOMSON [18] CDM
0 10 1 3.5160152 - 3.5160 3.5160
1 4.3151703 4.3151703 - 4.3151575
2 23.519257 - - 23.518686
—-1/2 | 10
3 63.199197 - - 63.195723
4 122.43963 - - 122.42584

In the same table, the exact values for a constant beam are reported from
1
THOMSON |[18], as well as the particular case a = —5 which was studied by

HoDGES [19] using a finite element transfer matrix approach.
The non-dimensional frequencies (2; are given in Table 3, for the following
quadratic variation law:

A I
4 —=—=1 2
(3 ) A(] IO +Z+Z7

the Rayleigh—Ritz results have been obtained using 20 trial functions, and the
results show some discrepancies within the sixth decimal place.

Table 3. As in Table 2, but A/Ay =I/Ip =1+ z + 2°.

Mode ABRATE [4] Hobces [19] CDM
1 2.4707858401571 | 2.4707858401571 2.4707660120
2 19.844681725047 - 19.844038124
3 59.7740637 - 59.770332125
4 119.040848 - 119.02840258

3. A numerical comparison is illustrated in Table 4, between the results given
by our approach and the results given by GROSSI et al. [5], using a classical
Rayleigh—Ritz method and a more sophisticated Rayleigh—Schmidt procedure.
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Table 4. Numerical comparison between the results in [5] and CDM.

vV
R ba/bi=1 | ba/b=5 ba/bi=1 | ba/bi=5
75 = 0.00 T, =0.10
- - 0.32193 0.30080
0.0 - - 0.32172 0.30049
- - 0.32172 0.30046
0.90219 1.00180 0.90603 1.00401
0.1 0.90200 1.00150 0.90574 1.00361
0.90197 1.00145 0.90570 1.00355
1.95338 2.15046 1.95429 2.15123
10 1.94044 2.13050 1.94110 2.13095
1.93828 2.12654 1.93890 2.12696
2.05048 2.25019 2.05136 2.25095
100 2.03481 2.22614 2.03544 2.2269
2.03200 2.22101 2.03259 2.22141
2.06219 2.26179 2.06306 2.26254
~ 2.04655 2.23784 2.04718 2.23828
2.04367 2.23258 2.04427 2.23209
Ty = 10 T = o
1.06415 1.02179 2.36301 2.34082
0.0 1.01514 0.95216 2.32154 2.27992
1.00992 0.94413 2.31286 2.26429
1.19009 1.21458 2.39812 2.38694
0.1 1.15137 1.16844 2.35653 2.32640
1.14723 1.16320 2.34785 2.31092
2.04639 2.23125 3.10163 3.21538
10 2.00323 2.17527 3.03750 3.12459
1.99724 2.16623 3.02511 3.10289
2.13995 2.32944 3.27145 3.39476
100 2.09525 2.27026 3.19917 3.29240
2.08847 2.25081 3.18515 3.26755
2.15052 2.33995 3.29341 3.41670
0 2.10664 2.28179 3.22144 3.31473
2.09989 2.27131 3.20739 3.28980
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The example refers to a tapered beam resting on elastically flexible ends with
axial stiffnesses T and T and rotational stiffnesses R; and Ro, respectively. The
cross-sectional area and the moment of inertia vary according to the following
laws:

(3.5) A(z) = b()h(z) = AL (1+ et ) (1+aT),
(3.6) 1) = PO g (102) (1+al),
ha bih3

are the area and the

b
Where01:——1,02:—2—1andA1:b1h1,11:
hy by
moment of inertia of the initial section.
pAw? L

£l is given in the

The first non-dimensional frequency v/ A; =

h
Table 4 for Ry = 0, T1 = oo, h—z = 0.25, and for various R values. The first v/\;

value has been obtained using:;l the Rayleigh—Ritz method, the second value is
obtained by the optimized Rayleigh—Schmidt method, and finally the last value
has been obtained using the CDM. As expected, our values are nearer to the
Rayleigh—Schmidt results.

4. The free vibration frequencies of tapered beams with circular or elliptic
cross-sections have been studied by Mou et al. [6], using the exact dynamic
stiffness matrix (EDSM). The variation laws of cross-sectional area and moment
of inertia are given by:

(3.7) A =0(3)", 1 =n0(3)",

where Ay and Iy are the area and the moment of inertia of the largest cross-
section, and m, n, are positive numbers.

Two particular cases are dealt with in some detail:

a) Circular cross-section with n =2p, m =4p and 0.1 < p < 1.

pAow?L*

El
Table 5 according to the EDSM, FEM and CDM, respectively, for a truncation
factor ¢ = 0.4.

b) Elliptic cross-section n = p; + p2, m = p; + 3p2, ¢ = 0.3 and p; =
0.3, 0.7, 0.1 < py < 1.

As in Table 5, three sets of results are reported in Table 6, and in both the
cases the CDM is nearer to the EDSM results than to the FEM results.

The first two non-dimensional frequencies \; = are given in
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Table 5. Numerical comparison between the results in [6] and CDM. Circular
cross-section.

c=04

EDSM FEM CDM

p 1st 2nd 1st 2nd 1st 2nd
0.1 | 3.19015 | 7.77380 | 3.21524 | 7.82701 | 3.19014 | 7.77367
0.2 | 3.25449 | 7.72284 | 3.27964 | 7.78458 | 3.25448 | 7.72272
0.3 | 3.31808 | 7.67068 | 3.34343 | 7.74074 | 3.31806 | 7.67056
0.4 | 3.38074 | 7.61739 | 3.40649 | 7.69554 | 3.38074 | 7.61727
0.5 | 3.44013 | 7.56198 | 3.46866 | 7.64903 | 3.44238 | 7.56291
0.6 | 3.50282 | 7.50765 | 3.52984 | 7.60125 | 3.50285 | 7.50755
0.7 | 3.56203 | 7.45133 | 3.58987 | 7.55227 | 3.56201 | 7.45123
0.8 | 3.61971 | 7.39411 | 3.64862 | 7.50211 | 3.61971 | 7.39402
0.9 | 3.67580 | 7.33606 | 3.70594 | 7.45084 | 3.67580 | 7.33597
1.0 | 3.73014 | 7.27722 | 3.76168 | 7.39850 | 3.73015 | 7.27714

Table 6. Numerical comparison between the results in [6] and CDM. Elliptic
cross-section.

EDSM FEM CDM

c p1 | p2 m n 1st 2nd 1st 2nd 1st 2nd
0.1 0.6 |04 | 284831 | 6.73501 | 2.86186 | 6.77346 | 2.84830 | 6.73490
0.2 10905287311 | 6.64825 | 2.88832 | 6.69790 | 2.87308 | 6.64810
0.3 1.2 ]0.6|2.89672 | 6.56054 | 2.91376 | 6.62116 | 2.89672 | 6.56040
0.4 | 1.5]0.7 291913 | 6.47194 | 2.93813 | 6.54326 | 2.91913 | 6.47182
0.5 | 1.8 | 0.8 | 2.94029 | 6.38252 | 3.96133 | 6.46426 | 2.94023 | 6.38239
0.6 | 2.1 | 0.9 | 2.95981 | 6.29231 | 2.98329 | 6.38421 | 2.95995 | 6.29220
0.7 12410297812 | 6.20140 | 3.00393 | 6.30315 | 2.97819 | 6.20129
0.8 | 2.7 | 1.1 | 2.99487 | 6.10984 | 3.023315 | 6.22114 | 2.99487 | 6.10973
0.9 | 3.0 1.2 3.00852 | 6.01735 | 3.04087 | 6.13824 | 3.00990 | 6.01761
0.3 1.0 | 3.3 | 1.3 | 3.02317 | 5.92507 | 3.05699 | 6.05451 | 3.02317 | 6.92498
0.1 | 1.0 | 0.8 | 3.04548 | 6.90106 | 3.04583 | 6.91263 | 3.04541 | 6.88970
0.2 | 1.3 0.9 3.06963 | 6.80113 | 3.07191 | 6.83524 | 3.06957 | 6.80099
0.3 1.6 | 1.0 | 3.09245 | 6.71148 | 3.09686 | 6.75666 | 3.09246 | 6.71135
0.4 1.9 1.1]3.11389 | 6.62094 | 3.12061 | 6.67692 | 3.11399 | 6.62082
0.5 (22 1.2]3.13410 | 6.52956 | 3.14308 | 6.59607 | 3.13410 | 6.52945
0.6 | 2.5 | 1.3 | 3.15268 | 6.43741 | 3.16418 | 6.51415 | 3.15268 | 6.43730
0.7 | 2.8 | 1.4 | 3.16966 | 6.34453 | 3.18383 | 6.43122 | 3.16966 | 6.34443
0.8 3.1]15] 3.1894 | 6.25100 | 3.20193 | 6.34732 | 3.18495 | 6.25091
0.9 |34 1.6]3.19843 | 6.15689 | 3.21839 | 6.26251 | 3.19844 | 6.15680
1.0 | 3.7 | 1.7 | 3.21003 | 6.06266 | 3.23311 | 6.17686 | 3.21004 | 6.06217

0.3

0.7
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5. The same structure has been studied by ZHOU et al. [7]| for the par-
ticular case n = 2 and m = 4. The non-dimensional frequency coeflicients
2; = 1/pA0wi2L4 /E1y are given for various values of the truncation factor «,
see Table 7, as obtained by the following five approaches:

a) Orthogonally generated polynomials as trial functions in the Rayleigh—Ritz
energy approach [7], and 8 terms.

b) Generated polynomials as trial functions in the Rayleigh-Ritz method [20].
c¢) Exact solution [21].
d) Frobenius method [22].
e) CDM.
Table 7. Numerical comparison between the results in [7] and CDM.
a Ref. (92} 2 23 2 25
(a) 6.1664 18.385 39.834 71.245 112.89
(b) 6.1964 18.386 39.837 71.288 113.33
0.2 (c) 6.1964 18.385 39.834 71.242 112.83
(d) 6.1914 18.386 39.834 - -
(e) 6.1964 18.385 39.834 71.235 112.81
(a) 4.6252 19.548 48.579 91.816 149.43
(c) 4.6252 19.548 48.579 91.813 149.39
0-5 () 46252 | 19.548 | 48579 - -
(e) 4.6252 19.548 48.577 91.806 149.37
(a) 3.8551 21.057 56.630 109.76 180.66
0.8 (c) 3.8551 21.057 56.630 109.76 180.61
(e) 3.8551 21.056 56.627 109.75 180.58

6. Let us consider now a set of assembled tapered beams, as given for example
by MoOU et al. [6]. The structure is given by a linearly tapered beam, an uniform
beam and a non-uniform tapered beams assembled together. The first three non-
dimensional frequencies are given in Table 8, and even in this case we observe
the excellent agreement with the EDSM results.

7. Another interesting case is examined by LAURA et al. in [8]. The structure
has rectangular cross-section and constant width. In the first span the height is
supposed to vary according to the following linear law:

(3.8) h(z) = ho (1 . a%) . 0<z<Ly,

whereas in the second midspan the height has a constant value, given by:

(3.9) h(z) = ho (1 - a%) , L <z<L.
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Table 8. Numerical comparison between the results in [6] and CDM.
Three-segment beam with a linear segment, a constant segment and non-linear
segment.

EDSM FEM CDM
P 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

0.1]0.98852 | 2.37379 | 3.83817 | 0.89936 | 2.15550 | 3.52085 | 0.98851 | 2.37373 | 3.83795
0.2 | 1.01947 | 2.40456 | 3.84090 | 0.92184 | 2.18313 | 3.53005 | 1.01946 | 2.40450 | 3.84070
0.3 | 1.04900 | 2.43651 | 3.84342 | 0.94309 | 2.21167 | 3.53950 | 1.04899 | 2.43646 | 3.84323
0.4 | 1.07703 | 2.46952 | 3.84568 | 0.96310 | 2.24096 | 3.54919 | 1.07702 | 2.46948 | 3.84551
0.5 ] 1.10239 | 2.50353 | 3.84717 | 0.98185 | 2.27079 | 3.55908 | 1.10351 | 2.50338 | 3.84747
0.6 | 1.28844 | 2.53801 | 3.84915 | 0.99936 | 2.30097 | 3.56913 | 1.12843 | 2.53798 | 3.84902
0.7 | 1.15180 | 2.57311 | 3.85015 | 1.01566 | 2.33129 | 3.57925 | 1.15179 | 2.57309 | 3.86004
0.8 | 1.17364 | 2.60850 | 3.85045 | 1.03080 | 2.36155 | 3.58930 | 1.17364 | 2.60849 | 3.85040
0.9 | 1.19402 | 2.64396 | 3.85059 | 1.04484 | 2.39154 | 3.59912 | 1.19401 | 2.64395 | 3.85055
1.0 | 1.21300 | 2.67923 | 3.85084 | 1.05784 | 2.42108 | 3.60849 | 1.21299 | 2.67927 | 3.85080

The first three non-dimensional frequencies §2; are calculated as in the Exam-
ple 5, and Ag and Iy are the area and the moment of inertia of the initial section.
The simply supported beam and the clamped-clamped beam are examined in the
Tables 9-10, where the results obtained by the Differential Quadrature Method

Table 9. Numerical comparison between four different discretization methods,
for simply supported two-segment beam. The first three non-dimensional
frequencies are given for various values of o and v = L,/L.

a=0.1 a=02 a=0.3
Y Ql QQ .93 91 QQ 93 »Ql 92 QS
(1) | 9.629 | 38.56 | 86.84 | 9.387 | 37.64 | 84.86 | 9.145 | 36.72 | 82.87
o5 L@ 0T | - - | 9681 | - ~ | 9584 | - -
(3) | 9.627 | - ~ |o9388| - ~ 9143 | - -
(4) | 9.628 | 38.56 | 86.85 | 9.387 | 37.64 | 84.87 | 9.145 | 36.72 | 82.89
(1) | 9.447 | 37.99 | 85.42 | 9.018 | 36.49 | 81.00 | 8.583 | 34.97 | 78.54
05 L2973 | - - o517 | - ~ | 9404 | - -
(3) | 9.447 - - 9.037 - - 8.612 - -
(4) | 9446 | 37.99 | 85.43 | 9.018 | 36.49 | 82.01 | 8.583 | 34.97 | 78.55
(1) | 9.374 | 37.56 | 84.59 | 8.863 | 35.62 | 80.29 | 8.331 | 33.64 | 75.91
(2) | 9525 | - - | 9163 | - - | 83| - -
0.75
(3) | 9.382 - - 8.870 - - 8.338 - -
(4) | 9.374 | 37.56 | 84.60 | 8.862 | 35.62 | 80.20 | 8.331 | 33.64 | 75.92
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Table 10. Numerical comparison between four different discretization method,
for clamped-clamped two-segment beam. The first three non-dimensional
frequencies are given for various values of « and v = L,/L.

a=0.1 a=0.2 a=0.3
ol (ol 2 s (o0 2 (23 (o 22 23
(1) | 22.000 | 60.46 | 118.38 | 21.625 21.250
0.25 (2) | 22.059 - - 21.729 - - 21.383 - -
(3) | 22.005 - - 21.635 - - 21.266 - -
(4) | 22.000 | 60.46 | 118.42 | 21.625 | 59.25 | 115.92 | 21.250 | 58.04 | 113.41
(1) | 21.675 | 59.55 | 116.48 | 20.971 | 57.41 | 112.03 | 20.262 | 55.25 | 107.52
0.5 (2) | 21.979 - - 21.567 - - 21.134 - -
(3) | 21.681 - - 20.985 - - 20.287 - -
(4) | 21.675 | 59.56 | 116.50 | 20.971 | 57.42 | 112.04 | 20.261 | 55.25 | 107.54
(1) | 21.432 | 58.89 | 115.31 | 20.471 | 56.06 | 109.65 | 19.488 | 53.16 | 103.85
075 (2) | 21.507 - - 20.641 - - 19.778 - -
(3) | 21.435 - - 20.476 - - 19.497 - -
(4) | 21.432 | 58.90 | 115.35 | 20.471 | 56.06 | 109.68 | 19.488 | 53.17 | 103.88

(DQM), the optimized Rayleigh-Ritz method and the Finite Element Method
(FEM) are compared with the CDM results. Even in this case, our results give
an excellent lower bound.

8. A similar structure has been studied in [10], where the free vibration
frequencies of a two-beam structure on flexible supports are exactly calculated.
The first beam constant has a cross-section, the second beam is defined by the
following taper law:

(3.10) A(z) =A™, I(2)=Ln""2
with:
a—1

3.11 14+ ————2],
(310 | i)

. . hy  bo
and 3 is a multiplying factor of the span of the first beam, a = T 1

101

and Aq, I; are the cross-sectional area and the moment of inertia of the initial
section.
For a clamped-clamped beam, the first five free non-dimensional vibration
pAw? L

frequencies p; = —gy, e given in Tables 11-12 for various 4 and «
1

values, as obtained using an exact approach and our discretization method.



58

M. A. DE ROSA, M. LIPPIELLO

Table 11. Numerical comparison between the results in [9] and CDM.
Two-segment beam =0 and (=0.2.

« 8=0 =02
b1 b2 b3 b4 ps D1 D2 b3 Pa Ps
1 4.73 7.8532(10.9956 | 14.1372 | 17.2788 - - - - -
4.73 7.8529(10.9949 | 14.1358 | 17.2764 - - - - -
195 5.0098 | 8.3172|11.6449|14.9718|18.2988 | 4.9828 | 8.2468|11.5303 | 14.8165 | 18.1036
5.0097| 8.3168|11.6442|14.9703 |18.2962 | 4.9827 | 8.2464|11.5290 | 14.8136 | 18.0985
1.43 5.1933| 8.621012.0699|15.5179 - - - - - -
5.1946 | 8.6230(12.0724 | 15.5206 - - - - - -
15 5.2636 | 8.7374|12.2325|15.7268 | 19.2213 | 5.2104 | 8.5986 | 12.0071 | 15.4214 | 18.8356
5.2634| 8.7370(12.2317|15.7253 |19.2186 | 5.2103 | 8.5982|12.0057 | 15.4183 | 18.8307
154 5.3007 | 8.7988|12.3184 |15.8373 - - - - - -
5.3021| 8.8009|12.3210|15.8401 - - - - - -
1.66 5.4215| 8.9985(12.5975|16.1958 - - - - - -
5.4152| 8.987912.5824|16.1759 - - - - - -
175 5.4976| 9.1242|12.7732|16.4215|20.0700 | 5.4186 | 8.9189|12.4404 |15.9700 | 19.4973
5.4975| 9.1239|12.7724]16.4198 | 20.1671 | 5.4185 | 8.9185|12.4390 | 15.9669 | 19.4924
9 5.7159| 9.4848|13.2769|17.0684 | 20.7145 | 5.6112| 9.1246 | 12.8398 |16.4741|20.1029
5.7157| 9.4844|13.2760|17.0666 | 20.8570 | 5.6111 | 9.2142|12.8384 | 16.4709 | 20.0982
9.95 5.9213| 9.8238|13.7502|17.6761 | 21.6024 | 5.7910| 9.4904|13.2118|16.9418 | 20.6627
5.9211| 9.8233|13.7492|17.6742|21.5992 | 5.7910| 9.4899|13.2103|16.9386 | 20.6581
95 6.1159]10.1447 | 14.1981 | 18.2512 | 22.3047 | 5.9601 | 9.7498 | 13.5609 | 17.3789 | 21.1841
6.1157)10.1412|14.1971 | 18.2492 | 22.3012 | 5.9600 | 9.7493 | 13.5594 | 17.3758 | 21.1796
975 6.3012|10.4501 | 14.6243 | 18.7983 | 22.9727 | 6.1199 | 9.9954 | 13.8907 | 17.7899 | 21.6727
6.3010|10.4496 | 14.6232 | 18.7961 | 22.3691 | 6.1199 | 9.9950 | 13.8891 | 17.7867 | 21.6683
3 6.4785(10.7421|15.0317|19.3211 | 23.6112 | 6.2719 | 10.2293 | 14.2038 | 18.1780 | 22.1329
6.4783110.7416 | 15.0305 | 19.3189 | 23.6074 | 6.2719 | 10.2288 | 14.2022 | 18.1749 | 22.1286
4 7.1242(11.8048 | 16.5134 | 21.2222|25.9321 | 6.8185 | 11.0756 | 15.3250 | 19.5488 | 23.7544
7.1240]11.8041|16.5119|21.2194 | 25.9275 | 6.8185 | 11.0751 | 15.3232 | 19.5459 | 23.7501
5 7.6947112.7427 | 17.8202 | 22.8984 | 27.9780 | 7.2960 | 11.8213 | 16.2894 | 20.7025 | 25.1251
7.6944 |12.7419 | 17.8183 | 22.8951 | 27.9724 | 7.2960 | 11.8206 | 16.2876 | 20.6999 | 25.1205
10 9.9421|16.4342 | 22.9582 | 29.4844 | 36.0136 | 9.2302 | 14.7957 | 19.7536 | 24.8107 | 30.1851
9.9412|16.4322 | 22.9544 | 29.4779 | 36.0034 | 9.2301 | 14.7949 | 19.7524 | 24.8078 | 30.1771
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Table 12. Numerical comparison between the results in [9] and CDM.
Two-segment beam ($=0.4 and $=0.6.

o 8=04 B8=038
b1 D2 b3 D4 Ds D1 b2 D3 D4 Ds
195 4.9557 | 8.1761 |11.4107 | 14.6498 | 17.9006 | 4.9355 | 8.1007 |11.3025 | 14.4934 | 17.7072
4.9556 | 8.1758 |11.4100 | 14.6481|17.8979|4.9354 | 8.1003 | 11.3017 | 14.4917 | 17.7042
15 5.1583 | 8.4647 |11.7714|15.0992 |18.4409 | 5.1286 | 8.3130 |11.5711|14.8030| 18.0716
5.1582| 8.4643 | 11.7707|15.0976 | 18.4383 | 5.1285 | 8.3126 | 11.5702 | 14.8013 | 18.0684
175 5.3450 | 8.7264 |12.0917|15.5022|18.9192 |5.3117| 8.5015 | 11.8086 | 15.0804 | 18.3887
5.3449 | 8.7261 |12.0910 | 15.5005 | 18.9166 | 5.3116 | 8.5011 |11.8077|15.0786 | 18.3854
9 5.5203 | 8.9661 |12.3812|15.8689|19.3490 | 5.4852 | 8.6737 |12.0202 | 15.3335|18.6705
5.5203 | 8.9657 |12.3804|15.8671|19.3464 | 5.4851 | 8.6733 |12.0192|15.3318|18.6671
9.95 5.6874 ] 9.1869 |12.6465|16.2057 | 19.7399 | 5.6491 | 8.8350 |12.2099 | 15.5672 | 18.9256
5.6873 | 9.1866 |12.6457 |16.2040 [ 19.7373 | 5.6490 | 8.8346 |12.2089 | 15.5654 | 18.9221
95 5.8481] 9.3913 | 12.8926|16.5173|20.0994 | 5.8032 | 8.9891 |12.3813|15.7842|19.1603
5.8480| 9.3910 | 12.8918|16.5155 |20.0968 | 5.8031 | 8.9886 |12.3803 |15.7823|19.1567
975 6.0040 | 9.5812 |12.1233|16.8069 | 20.4332 | 5.9473 | 9.1383 |12.5373 | 15.9862 | 19.3793
6.0039 | 9.5809 |12.1225|16.8052 | 20.4304 | 5.9472 | 9.1379 |12.5362|15.9843|19.3757
3 6.1559 | 9.7581 |13.3414|17.0773|20.7456 | 6.0814 | 9.2844 |12.6805 | 16.1745|19.5859
6.1558 | 9.7578 | 13.3405|17.0755 | 20.7428 | 6.0813 | 9.2839 |12.6793 | 16.1725|19.5822
4 6.7646 | 10.3592 | 14.1231 | 18.0024 | 21.8410 | 6.5221 | 9.8517 | 13.1664 | 16.8069 | 20.3242
6.7345|10.3589 | 14.1221 | 18.0007 | 21.8377 | 6.5219 | 9.8513 | 13.1650 | 16.8046 | 20.3230
5 7.2772110.8334 | 14.8061 | 18.7435 | 22.7672 | 6.8326 | 10.3908 | 13.5838 | 17.2834 | 20.9536
7.2771110.8331 | 14.8050 | 18.7417 | 22.7637 | 6.8323 | 10.3903 | 13.5824 | 17.2807 | 20.9495
10 9.4280(12.4761 | 17.2360 | 21.3717 | 25.8612 | 7.4616 | 12.0636 | 15.7599 | 22.7572 | 26.8834
9.4279112.4755|17.2349 | 21.3692 | 25.8572 | 7.4610 | 12.0623 | 15.7585 | 18.7567 | 22.7506

9. An interesting two-beams structure has been studied in [9], where the first
beam is defined by the following taper ratio:

A(z) = Ay [1 + Oélﬁ; 12] )
3.12 — n+2
(3:12) I(z)=1 [1+a1ﬁle] ,

0<2<0L,
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whereas for the second beam we have:

a1 —

m(z — L) + Oé1a2:| s

(3.13)
apog — aq

n+2
Li-p ¢ Y ”10‘2]

I(z)=1 [

and L < z < L.

The structure is supposed to be clamped at left, and resting on an elastically
flexible end at right.

The first three free non-dimensional frequencies p;, as in Table 11, are given
in Tables 13-14 for various 3, a and various materials. Even in this last case,
our results present an excellent lower bound.

10. The numerical example which is presented below was taken from Ref. [11]:
in this paper, the problem of vibration of beam with rectangular cross-section,
where the base is constant and the height is variable, was studied. In this case,
the variation laws of cross-sectional area and moment of inertia are given by

A(2) = Ao (%(a 1)+ 1) :
(3.14) ;
1(2) = I (%(a — 1)+ 1) ,

where Ag and Iy are the cross-sectional area and the moment of inertia of the
initial beam, respectively, and a = hy/h; = 0.5, where h; and hg are the initial
and final beam’s cross-section height, respectively.

By using the data of the numerical example, p. 461 of the paper [11], the
vibration frequencies are determined:

wj
(3.15) fi= o

In particular, in Table 15 the first seven vibration frequencies for a simply
supported beam (Example (a)) and the first five vibration frequencies for a can-
tilever beam (Example (b)) are reported.

The problem of vibration frequencies is solved using the presented method
and the Chebyshev series approximation: the obtained results show an excellent
agreement.

In Appendix 1 the numerical program, using “Mathematica” code, is reported.
The data refer to this particular case, as can be noted by the cross-sectional areas
and moment of inertia expressions which are identical to those of Formula (3.14).
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Table 13. Numerical comparison between the results in [10] and CDM.
Two-segment beam with the first constant segment and the second variable
segment. Wedge beam.

ar =az=1.5
B p1 P2 P3

2.960984 | 6.623893 | 10.653342
2.961004 | 6.623736 | 10.652826
2.955257 | 6.339284 | 10.116494
Single material 04 73055256 | 6.339196 | 10.116103
S o6 | 2831723 | 6.002049 | 0714487
2831713 | 6.092845 | 9.714025
2.610069 | 5.874837 | 9.440699
2.609593 | 5.874592 | 9.439987
3341329 | 7.266658 | 10.982127
3.341349 | 7.626415 | 10.981648
3.638804 | 6.379341 | 10.365182
Alum_inéum 04 73638802 | 6.379263 | 10.364734
L — 588889 0 | 3352323 | 6436236 | 0652822
3352308 | 6.436130 | 9.652349
2.809352 | 6.321979 | 9.990769
2.809358 | 6.321652 | 9.989850
2.448228 | 6.152010 | 10.232177
2.448235 | 6.151898 | 10.231652
2.310298 | 5.987174 | 10.093364
Steel-Aluminium 04 73310299 | 5.987064 | 10.092935

0.2

0.8

0.2

0.8

0.2

y _ 0.33533 2.255394 | 5.732798 9.537642
v = 0.34615 0.6

2.255445 | 5.732686 9.537146

0.8 2.258520 | 5.874837 9.440699

' 2.258414 | 5.453477 9.047567

0.9 2.223087 | 6.381117 | 10.567467

2.224018 | 6.380980 | 10.566875
2.050444 | 5.865405 | 10.710794
Tungsten-Aluminium 0-4 =5 051179 | 5.865266 | 10.710309
5;3'125 06 | 2006496 | 5530217 | 0568246
2.006565 | 5.539101 | 9.567671

2.060400 | 5.308516 | 8.883911
2.060452 | 5.308366 | 8.883313
3.223087 | 7.139275 | 10.91989
3.221416 | 7.138936 | 10.619406
3.797734 | 6.077439 | 9.997253
Aluminiu@'gungsten 04 73797706 | 6.077367 | 9.996747
V256f66666 06 | 3327982 | 6354572 | 9.292052
3.527960 | 6.354485 | 9.292463

2.858571 | 6.472948 | 10.206816
2.858605 | 6.472582 | 10.205816

0.8

0.2

0.8
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Table 14. Numerical comparison between the results in [10] and CDM.
Two-segment beam with the first constant segment and the second variable
segment. Cone beam.

o1 = Qg = 1.5
B D1 D2 P3
3.241992 6.890704 10.872190

0-2 773241097 | 6.890536 | 10.871682

3295517 | 6.585544 | 10.284771

Single material 04 73205519 | 6.585466 | 10.284399

N oG | 3135124 | 6355070 | 0.883600

3.135132 | 6.355880 |  9.883170

2.826031 | 6.098033 |  9.655944

08 5826067 | 6.007798 |  9.655200

3.601942 | 7.570925 | 11.289006

02 3601024 | 7570652 | 11.288512

1013659 | 6.625189 | 10.579703

Alum_inéum 04 ™ 1013651 | 6.625127 | 10.579268

L 5 88880 oG | 3653600 | 6750004 | 0.818821
3.653686 | 6.758005 |  9.8183760

3.005513 | 6.525742 | 10.241486

08 ™3005487 | 6525412 | 10.240488

2719027 | 6.366531 | 10.431558

0-2 75710020 | 6.363403 | 10.431012

2591143 | 6.257891 | 10.208067

Steelf&%?éggum 04 5501070 | 6257762 | 10.207648
 0at6is o |__25200643 | 5082285 | 0.7002030
7520663 | 5.982184 |  9.6997084
2.484248 | 5647080 |  9.2249650

08 5181001 | 5646931 9.224344

0 | 2485453 | 6604193 | 10.794795

2.485391 6.604093 10.794207
o 04 2.303951 6.171426 10.786371
Tungsten-Aluminium ’ 2.303799 6.171287 10.785913

f;g '125 06 | 22ATTTT | 5799427 | 9727984
2247773 | 5799312 |  9.727416

0 | 2280355 | 5486273 | 9.059468

2.280369 | 5.486060 |  9.058860

3444017 | 7.392360 | 10.993261

02 737124000 | 7.392008 | 10.992690

4142424 | 6.344458 | 10.200137

Aluminiu@';fungsten 04 1112405 | 6344406 | 10.199647
L 6.66666 06 | 3816945 | 6688364 | 9.456933
3816922 | 6.688486 |  9.456470

og |_3048076 | G.658406 | 10.461855

3.048054 6.658042 10.460753
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Table 15. Numerical comparison between the results in [11] and CDM.
Non-prismatic beam. Example (a) — a simply supported beam.
Example (b) — a cantilever beam.

Example (a) fl f2 f3 f4 f5 f() f7 fg
This paper | 188.44 | 757.97 | 1703.89 | 3027.50 | 4728.90 | 6808.07 | 9264.89 | 12099.20
[11] 188.44 | 757.99 | 1703.97 | 3027.75 | 4729.39 | 6808.80 | 9286.04 | 12103.70

Example (b)
This paper | 85.66 | 455.80 | 121.55 | 2350.21 | 3864.60 | 5746.44
[11] 85.66 | 455.80 | 1215.48 | 2349.93 | 3862.32 | 5752.45

11. Finally, in a recent paper 23] the free vibration frequency of an isotropic
beam have been found, for a variable cross-section with an exponential law:

A(z) = Ape’?,
(3.16)
I(z) = Ipe®,

where § is the non-uniformity parameter.

In Table 16 the free vibration frequencies given in Table 1, p. 82 of the paper
[23|, have been reproduced using CDM. The agreement is very good, both for
simply supported beams and for clamped-clamped beams. On the contrary, the
discrepancies for the first two free frequencies in cantilever beams are noticeable,
both for § = —1, —2 and for § = 1, 2, so that we have reproduced the calculations,
as described in [19], and the newly calculated results show an excellent agreement
with the CDM.

Consequently, it seems that the values given in [23| are misprinted.

4. CONCLUSIONS

The free vibration frequencies of tapered beams are studied, for arbitrary
variation laws of cross-sectional area and moments of inertia, in the presence
of rotationally and axially flexible supports. The beam is viewed as a set of
rigid bars linked together at discrete sections, in which stiffness and mass are
concentrated, and the resulting system with finite number of degrees of freedom
is so simple to analyze to permit a careful discretization, using a large number of
rigid bars (in our case, 300 bars). Several examples are treated in some details,
comparing exact and approximate results from the literature, and the proposed
approach always gives excellent results.
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APPENDIX 1

Cell1[n_,span , h1_, h2_, b , young_, p_,KTL , KTR_, kRL , kRR ] :=
MJdulel
{i, j, t, @, 10, A, z m, inerz are, k, V, A, K, M, FREQUENCIES},
t=(spam)/ (n-D; = b2/ h1;10= b hi> /12; A0 = b h;
z="Table{0, {i, 1, n}]; m =Table[0, {i, 1, n}];
inerz= Table[0, {i, 1, n}]; are = Table[0, {i, 1, n}];
k=Table[0, {i,1, n}, {j, 1, n}]; V =Table[0, {i,1, n—-1}, {j, 1, n}];
A =Table[0, {i, 1, n}, {j, 1, n— 1}]; K =Table[0, {i, 1, n}, {j, 1, n}];
M= Table[0, {i, 1, n}, {j,1, n}]; FREQUENCIES = Table[0, {i, 1, n}, {j, 1, n}]:
A(1]]1=0;4[n]] = span; Do[4][i]] = (i- D= t, {i, 2, n—1}];
Dolare[[i]] = AOx (A[i]l/span (¢ — ) +1), {i, 1, n}];
Do[iner4[i]] = 10« (4[i]l/span(a — 1)+ 1 "3, {i, 1, n}];
m[[1]] =p= are[[1]]* t/2; m[[n]] = p=are[[n]] » t/2;
Do[m[[i]] = p* are[[i]]* t, {i, 2, n—1}];
KI[1,1]] = young« iner4[1]] /(t/2); KI[n, n]] = young iner4[n]]/(t/2);
KI[1, 171 = K1, 171 /(1 + K{[1, 171/ KRL);
KI[n, n]l = KI[n, n]] /(1 + KI[n, n]]1 / KRR);
Do[ki[i, i]l = young« iner4[ill / t, {i,2, n—1}];
Do[VI[i, ill = -1/t V[[i, i+1]1=1/¢, {i, I, n-1}];
Do[A[[i, il = 1; Alli +1, ill= -1, {i,1, n—1}];
Do[MI[i, ill = 1/m[i]l, {i, 1, n}];
K = Transpose| V].Transpose[A]. KA. V;
KI(1,1]1 = K[[1,1]] + KTL; K[[n, n]] = K[[n, n]] + KTR;
FREQUENCIES = Sqrt[Chop[N[Eigenvalues|[MK]]11/ (2 7);
Return|FREQUENCIES|;
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