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In this paper the free vibrations frequencies of tapered Euler-Bernoulli beams are calcu-
lated, in the presence of an arbitrary number of rotationally and/or axially, elastically flexible
constraints. The dynamic analysis is performed by means of the so-called cell discretization
method (CDM), according to which the beam is reduced to a set of rigid bars, linked together
by elastic sections, where the bending stiffness and the distributed mass of the bars is concen-
trated. The resulting stiffness matrix and mass matrix are easily deduced, and the generalized
symmetric eingenvalue problem can be immediately solved. Various numerical comparisons
allow us to show the potentialities of the proposed approach.
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1. Introduction

The dynamic analysis of beams with continuously varying cross-section is
a classical structural problem, which nowadays is becoming more and more im-
portant, even in mechanical engineering and in aeronautic engineering.

Numerous authors have approached the analysis assuming that the beam
is sufficiently slender to be considered as an Euler-Bernoulli beam, and trying
to analytically solve the resulting fourth-order differential equation with vari-
able coefficients. Among the others, Craver and Jampala [1] examine the free
vibration frequencies of a cantilever beam with variable cross-section and con-
straining springs; De Rosa and Auciello [2] give the exact free frequencies
of a beam with linearly varying cross-section, in the presence of generic non-
classically boundary conditions, so that all the usual boundary conditions can be
treated as particular cases; Datta and Sill [3] give the general solution in terms
of Bessel functions, and the first eingevalue for a beam with constant width and
linearly varying height is found. In 1995 Abrate [4] solved the differential equa-
tion for various taper laws, and also performed a numerical comparison with the
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Rayleigh–Ritz approach. Grossi et al. [5] employed both the classical Rayleigh–
Ritz method and the optimized Rayleigh–Schmidt method to find the frequencies
of beams with constant width and varying height, and also of beams with vary-
ing width and varying height. A lot of numerical results were given, for various
non-classical boundary conditions. Mou et al. [6] employed the exact dynamic
stiffness matrix (EDSM) to find the frequencies of circular and elliptic tapered
beams, and of beams defined by a linear-tapered section, a uniform section and
a non-linearly varying section. All the results are compared with a classical finite
element analysis. The Rayleigh–Ritz approach is used by Zhou and Cheung [7]
to find the first free vibration frequencies of three different tapered beams with
various boundary conditions and truncation factors. Finally, free vibrations of
Euler-Bernoulli beams of bilinearly varying thickness are studied in [8] using:
a) the optimized Rayleigh–Ritz method, b) the differential quadrature technique
and c) the finite element approach.

Tapered beams with more complex geometry and non-classical boundary
conditions were studied by Auciello et al. in [9–10]; the beam is divided into
two segments, and each segment has a different tapering law. The exact solutions
are obtained in both the above-mentioned papers, solving the corresponding
boundary value problem.

In [11–14] the dynamic stability problem of a non-prismatic beam is solved
using the Chebyshev series approximation: the method is used to solve the prob-
lem of vibration for a Euler–Bernoulli and Timoshenko beams.

In this paper a numerical approach is adopted, to find the free vibration
frequencies of Euler–Bernoulli multi-span beams with arbitrarily varying cross-
sections, in the presence of elastically flexible supports. The analysis is performed
reducing the beam to a set of rigid bars linked together by means of elastic sec-
tions (elastic cells), in which the stiffness and the mass of the beam is properly
concentrated. In this way, the structure is reduced to a system with finite num-
ber of degrees of freedom, and the global stiffness matrix and the global mass
matrix can be easily calculated. Obviously, the method can be dated back to
the first manual attempts to solve the vibration problem [15–16 e.g.], but in
this paper its feasibility to be computerized is clearly shown, using the powerful
symbolic software Mathematica [17], and various numerical comparisons show
the method’s usefulness.

2. Formulation of the problem

Let us consider the beam in Fig. 1, with span L, Young modulus E and mass
density ρ, resting on elastically flexible constraints at the ends, with rotational
stiffness kRL at left and kRR at rigth, and axial stiffness kTL at left and kTR at
rigth, respectively.
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Fig. 1. Structural system.

Moreover, let us suppose that both the moment of inertia I(z) and the cross-
sectional area A(z) vary with the abscissa z. As already said, the beam is reduced
to a set of t rigid bars with length li, connected by n = t + 1 elastic cells.
Whereas the possibility to adopt different lengths for each bar is invaluable in
order to simulate rapidly varying geometries, nevertheless in the following we
shall adopt the simplest choice, for which, li = l, i = 1, ...t. Moreover, the
moment of inertia I(z) and the cross-sectional area A(z) will be evaluated at
the cells abscissae, obtaining the concentrated stiffness ki = EI(z)/l and the
concentrated masses mi = ρA(z)l. Both these quantities can be organized into
the so-called unassembled stiffness matrix k = diag{ki}, i = 1, ...n and the
unassembled mass matrix M = diag{mi}, i = 1, ...n.

In this way, the structures is reduced to a classical holonomic system, with
n degrees of freedom. The n vertical displacements vi at the cells abscissae
can be assumed as Lagrangian coordinates, and they will be organized into the
n-dimensional vector v; equivantely, the vector v can be viewed as a (n×1)-di-
mensional matrix. The n − 1 rotations of the rigid bars can be calculated as
a function of the Lagrangian coordinates as follows:
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(2.1) φi =
vi+1 − vi

l

or, in matrix form: φ = Vv and V is a rectangular transfer matrix with n − 1
rows and n columns.

The relative rotations between the two faces of the elastic cells are given by:

(2.2) ψ1 = φ1, ψi = φi − φi−1, ψn = −φn−1,

or in matrix form ψ = ∆φ, and ∆ is another rectangular transfer matrix with n
rows and n− 1 columns.

The bending strain energy Le is concentrated at the cells, and is given by:

(2.3) Le =
1
2

n∑

i=1

kii ψ
2
i =

1
2
ψTkψ.

In order to obtain a quadratic form of the Lagrangian coordinates it is nec-
essary to use Eqs. (2.1)–(2.2):

(2.4) Le =
1
2
ψTkψ =

1
2
φT ∆Tk∆φ =

1
2
vT

(
V∆Tk∆V

)
v

or else:

(2.5) Le =
1
2
vTKv,

where K is the assembled stiffness matrix.
The kinetic energy can be simply expressed as:

(2.6) T =
1
2
vTMv.

The strain energy of the axially flexible constraints at the ends is given by:

(2.7) LTL =
1
2
kTLv2

1, LTR =
1
2
kRLv2

n,

so that the assembled stiffness matrix must be modified as follows:

(2.8) K[1, 1] = K[1, 1] + kTL, K[n, n] = K[n, n] + kTR.

The presence of axially flexible intermediate supports can be similarly dealt
with. If the constraint is placed at the abscissa zh = zi + lh, and if its axial
stiffness is given by kT , its vertical displacement is given by (cf. Fig. 2):

(2.9) vh = vi +
vi+1 − vi

l
lh
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Fig. 2. Intermediate axially and rotationally flexible supports.

and its strain energy is equal to:

(2.10) LT =
1
2
kT v2

h.

The rotational stiffnesses of the constraints can be taken into account by
summing up the corresponding flexibilities with the flexibilities of the rigid bars.
For example, for the end constraints we have:

(2.11) K [1, 1] =
K [1, 1] kRL

kRL + K [1, 1]
, K [n, n] =

K [n, n] kRR

kRR + K [n, n]
.

The equation of motion can be written as:

(2.12) Mv̈+Kv = 0.

The resulting generalized symmetric eingevalue problem can be easily solved,
and the frequencies ω2

i can be obtained, together with the corresponding vibra-
tion modes.

3. Numerical comparisons

In order to show the method’s potentialities, several numerical examples will
be examined, using a general code developed in Mathematica [17]. In this paper
we are not particularly interested in the convergence properties of the solutions,
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therefore all the examples will be performed by using a large number of cells, i.e.
n = 300.

1. As a first numerical comparison, let us consider a tapered Euler-Bernoulli
beam with cross-sectional area and moment of inertia given by the following
laws:

(3.1) A(z) = A0

(
(α− 1)

z

L
+ 1

)2
, I(z) = I0

(
(α− 1)

z

L
+ 1

)4
,

where α =
h1

h0
=

b1

b0
, and A0 and I0 are the cross-sectional area and the moment

of inertia of the section at left.
The beam is constrained at both ends with elastically flexible constraints,

defined by the following non-dimensional quantities:

(3.2) R1 =
kRLL

EI0
, R2 =

kRRL

EI1
, T1 =

kTLL3

EI0
, T2 =

kTRL3

EI1
.

This structure has been already solved in [2] using an exact approach, and

the first five non-dimensional frequencies pi =

√√√√
√

ρA0ω
2
i L

4

EI0
are reported in

Table 1. With this discretization level, the discrepancies are negligible.

Table 1. Numerical comparison between the first five non-dimensional frequency
coefficients pi for T1 = T2 →∞, α = 2.

R1 R2 p1 p2 p3 p4 p5

0 0 3.7300
3.7300

7.6302
7.6301

11.4217
11.4212

15.2083
15.2072

18.9954
18.9932

0 0.01 3.7345
3.7345

7.6317
7.6316

11.4226
11.4221

15.2089
15.2078

18.9959
18.9937

0 0.1 3.7737
3.7737

7.6447
7.6446

11.4306
11.4301

15.2147
15.2136

19.0004
19.9982

0 1 4.0635
4.0635

7.7619
7.7618

11.5054
11.5049

15.2695
15.2684

19.0436
19.0114

0 10 4.7549
4.7549

8.2846
8.2845

11.9277
11.9272

15.6221
15.6209

19.3456
19.3432

1 0 3.7984
3.7984

7.6803
7.6802

11.4604
11.4600

15.2397
15.2386

19.0218
19.0195

1 0.1 3.8409
3.8409

7.6946
7.6945

11.4693
11.4688

15.2461
15.2450

19.0267
19.0245

1 1 3.1249
3.1249

7.8105
7.8104

11.5436
11.5431

15.3007
15.2995

19.0698
19.0676

2. The free vibration frequencies of cantilever tapered beams have been stud-
ied byAbrate [4] using a Rayleigh–Ritz approach and an n-term approximation.
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The non-dimensional frequencies Ωi = ωi

√
ρA0L

4

EI0
are given in Table 2, for the

following variation law:

(3.3)
A

A0
=

I

I0
= 1 + αz.

Table 2. First four non-dimensional frequency coefficients Ωi for α = 0 and
α = −1/2.

α N Mode Abrate [4] Hodges [19] Thomson [18] CDM

0 10 1 3.5160152 – 3.5160 3.5160

−1/2 10

1 4.3151703 4.3151703 – 4.3151575

2 23.519257 – – 23.518686

3 63.199197 – – 63.195723

4 122.43963 – – 122.42584

In the same table, the exact values for a constant beam are reported from

Thomson [18], as well as the particular case α = −1
2
, which was studied by

Hodges [19] using a finite element transfer matrix approach.
The non-dimensional frequencies Ωi are given in Table 3, for the following

quadratic variation law:

(3.4)
A

A0
=

I

I0
= 1 + z + z2,

the Rayleigh–Ritz results have been obtained using 20 trial functions, and the
results show some discrepancies within the sixth decimal place.

Table 3. As in Table 2, but A/A0 = I/I0 = 1 + z + z2.

Mode Abrate [4] Hodges [19] CDM

1 2.4707858401571 2.4707858401571 2.4707660120

2 19.844681725047 – 19.844038124

3 59.7740637 – 59.770332125

4 119.040848 – 119.02840258

3. A numerical comparison is illustrated in Table 4, between the results given
by our approach and the results given by Grossi et al. [5], using a classical
Rayleigh–Ritz method and a more sophisticated Rayleigh–Schmidt procedure.
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Table 4. Numerical comparison between the results in [5] and CDM.
√

λ1

R1 b2/b1 = 1 b2/b1 = .5 b2/b1 = 1 b2/b1 = .5

T2 = 0.00 T2 = 0.10

– – 0.32193 0.30080

0.0 – – 0.32172 0.30049

– – 0.32172 0.30046

0.90219 1.00180 0.90603 1.00401

0.1 0.90200 1.00150 0.90574 1.00361

0.90197 1.00145 0.90570 1.00355

1.95338 2.15046 1.95429 2.15123

10 1.94044 2.13050 1.94110 2.13095

1.93828 2.12654 1.93890 2.12696

2.05048 2.25019 2.05136 2.25095

100 2.03481 2.22614 2.03544 2.2269

2.03200 2.22101 2.03259 2.22141

2.06219 2.26179 2.06306 2.26254

∞ 2.04655 2.23784 2.04718 2.23828

2.04367 2.23258 2.04427 2.23299

T2 = 10 T2 = ∞
1.06415 1.02179 2.36301 2.34082

0.0 1.01514 0.95216 2.32154 2.27992

1.00992 0.94413 2.31286 2.26429

1.19009 1.21458 2.39812 2.38694

0.1 1.15137 1.16844 2.35653 2.32640

1.14723 1.16320 2.34785 2.31092

2.04639 2.23125 3.10163 3.21538

10 2.00323 2.17527 3.03750 3.12459

1.99724 2.16623 3.02511 3.10289

2.13995 2.32944 3.27145 3.39476

100 2.09525 2.27026 3.19917 3.29240

2.08847 2.25981 3.18515 3.26755

2.15052 2.33995 3.29341 3.41670

∞ 2.10664 2.28179 3.22144 3.31473

2.09989 2.27131 3.20739 3.28980
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The example refers to a tapered beam resting on elastically flexible ends with
axial stiffnesses T1 and T2 and rotational stiffnesses R1 and R2, respectively. The
cross-sectional area and the moment of inertia vary according to the following
laws:

A(z) = b(z)h(z) = A1

(
1 + c2

z

L

)(
1 + c1

z

L

)
,(3.5)

I(z) =
b(z)h(z)3

12
= I1

(
1 + c2

z

L

)(
1 + c1

z

L

)3
,(3.6)

where c1 =
h2

h1
− 1, c2 =

b2

b1
− 1 and A1 = b1h1, I1 =

b1h
3
1

12
are the area and the

moment of inertia of the initial section.

The first non-dimensional frequency
√

λ1 =

√√√√
√

ρA1ω
2
i L

4

EI1
is given in the

Table 4 for R2 = 0, T1 = ∞,
h2

h1
= 0.25, and for various R1 values. The first

√
λ1

value has been obtained using the Rayleigh–Ritz method, the second value is
obtained by the optimized Rayleigh–Schmidt method, and finally the last value
has been obtained using the CDM. As expected, our values are nearer to the
Rayleigh–Schmidt results.

4. The free vibration frequencies of tapered beams with circular or elliptic
cross-sections have been studied by Mou et al. [6], using the exact dynamic
stiffness matrix (EDSM). The variation laws of cross-sectional area and moment
of inertia are given by:

(3.7) A(z) = A0

( z

L

)n
, I(z) = I0

( z

L

)m
,

where A0 and I0 are the area and the moment of inertia of the largest cross-
section, and m, n, are positive numbers.

Two particular cases are dealt with in some detail:
a) Circular cross-section with n = 2p, m = 4p and 0.1 < p < 1.

The first two non-dimensional frequencies λi =

√√√√
√

ρA0ω
2
i L

4

EI0
are given in

Table 5 according to the EDSM, FEM and CDM, respectively, for a truncation
factor c = 0.4.

b) Elliptic cross-section n = p1 + p2, m = p1 + 3p2, c = 0.3 and p1 =
0.3, 0.7, 0.1 < p2 < 1.

As in Table 5, three sets of results are reported in Table 6, and in both the
cases the CDM is nearer to the EDSM results than to the FEM results.
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Table 5. Numerical comparison between the results in [6] and CDM. Circular
cross-section.

c = 0.4

EDSM FEM CDM
p 1st 2nd 1st 2nd 1st 2nd
0.1 3.19015 7.77380 3.21524 7.82701 3.19014 7.77367
0.2 3.25449 7.72284 3.27964 7.78458 3.25448 7.72272
0.3 3.31808 7.67068 3.34343 7.74074 3.31806 7.67056
0.4 3.38074 7.61739 3.40649 7.69554 3.38074 7.61727
0.5 3.44013 7.56198 3.46866 7.64903 3.44238 7.56291
0.6 3.50282 7.50765 3.52984 7.60125 3.50285 7.50755
0.7 3.56203 7.45133 3.58987 7.55227 3.56201 7.45123
0.8 3.61971 7.39411 3.64862 7.50211 3.61971 7.39402
0.9 3.67580 7.33606 3.70594 7.45084 3.67580 7.33597
1.0 3.73014 7.27722 3.76168 7.39850 3.73015 7.27714

Table 6. Numerical comparison between the results in [6] and CDM. Elliptic
cross-section.

EDSM FEM CDM
c p1 p2 m n 1st 2nd 1st 2nd 1st 2nd

0.3

0.3

0.1 0.6 0.4 2.84831 6.73501 2.86186 6.77346 2.84830 6.73490
0.2 0.9 0.5 2.87311 6.64825 2.88832 6.69790 2.87308 6.64810
0.3 1.2 0.6 2.89672 6.56054 2.91376 6.62116 2.89672 6.56040
0.4 1.5 0.7 2.91913 6.47194 2.93813 6.54326 2.91913 6.47182
0.5 1.8 0.8 2.94029 6.38252 3.96133 6.46426 2.94023 6.38239
0.6 2.1 0.9 2.95981 6.29231 2.98329 6.38421 2.95995 6.29220
0.7 2.4 1.0 2.97812 6.20140 3.00393 6.30315 2.97819 6.20129
0.8 2.7 1.1 2.99487 6.10984 3.023315 6.22114 2.99487 6.10973
0.9 3.0 1.2 3.00852 6.01735 3.04087 6.13824 3.00990 6.01761
1.0 3.3 1.3 3.02317 5.92507 3.05699 6.05451 3.02317 6.92498

0.7

0.1 1.0 0.8 3.04548 6.90106 3.04583 6.91263 3.04541 6.88970
0.2 1.3 0.9 3.06963 6.80113 3.07191 6.83524 3.06957 6.80099
0.3 1.6 1.0 3.09245 6.71148 3.09686 6.75666 3.09246 6.71135
0.4 1.9 1.1 3.11389 6.62094 3.12061 6.67692 3.11399 6.62082
0.5 2.2 1.2 3.13410 6.52956 3.14308 6.59607 3.13410 6.52945
0.6 2.5 1.3 3.15268 6.43741 3.16418 6.51415 3.15268 6.43730
0.7 2.8 1.4 3.16966 6.34453 3.18383 6.43122 3.16966 6.34443
0.8 3.1 1.5 3.1894 6.25100 3.20193 6.34732 3.18495 6.25091
0.9 3.4 1.6 3.19843 6.15689 3.21839 6.26251 3.19844 6.15680
1.0 3.7 1.7 3.21003 6.06266 3.23311 6.17686 3.21004 6.06217
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5. The same structure has been studied by Zhou et al. [7] for the par-
ticular case n = 2 and m = 4. The non-dimensional frequency coefficients
Ωi =

√
ρA0ω2

i L
4/EI0 are given for various values of the truncation factor α,

see Table 7, as obtained by the following five approaches:
a) Orthogonally generated polynomials as trial functions in the Rayleigh–Ritz

energy approach [7], and 8 terms.
b) Generated polynomials as trial functions in the Rayleigh–Ritz method [20].
c) Exact solution [21].
d) Frobenius method [22].
e) CDM.

Table 7. Numerical comparison between the results in [7] and CDM.

α Ref. Ω1 Ω2 Ω3 Ω4 Ω5

(a) 6.1664 18.385 39.834 71.245 112.89
(b) 6.1964 18.386 39.837 71.288 113.33

0.2 (c) 6.1964 18.385 39.834 71.242 112.83
(d) 6.1914 18.386 39.834 – –
(e) 6.1964 18.385 39.834 71.235 112.81

0.5

(a) 4.6252 19.548 48.579 91.816 149.43
(c) 4.6252 19.548 48.579 91.813 149.39
(d) 4.6252 19.548 48.579 – –
(e) 4.6252 19.548 48.577 91.806 149.37
(a) 3.8551 21.057 56.630 109.76 180.66

0.8 (c) 3.8551 21.057 56.630 109.76 180.61
(e) 3.8551 21.056 56.627 109.75 180.58

6. Let us consider now a set of assembled tapered beams, as given for example
by Mou et al. [6]. The structure is given by a linearly tapered beam, an uniform
beam and a non-uniform tapered beams assembled together. The first three non-
dimensional frequencies are given in Table 8, and even in this case we observe
the excellent agreement with the EDSM results.

7. Another interesting case is examined by Laura et al. in [8]. The structure
has rectangular cross-section and constant width. In the first span the height is
supposed to vary according to the following linear law:

(3.8) h(z) = h0

(
1− α

z

L

)
, 0 ≤ z ≤ L1,

whereas in the second midspan the height has a constant value, given by:

(3.9) h(z) = h0

(
1− α

L1

L

)
, L1 ≤ z ≤ L.
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Table 8. Numerical comparison between the results in [6] and CDM.
Three-segment beam with a linear segment, a constant segment and non-linear

segment.

EDSM FEM CDM

p 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

0.1 0.98852 2.37379 3.83817 0.89936 2.15550 3.52085 0.98851 2.37373 3.83795

0.2 1.01947 2.40456 3.84090 0.92184 2.18313 3.53005 1.01946 2.40450 3.84070

0.3 1.04900 2.43651 3.84342 0.94309 2.21167 3.53950 1.04899 2.43646 3.84323

0.4 1.07703 2.46952 3.84568 0.96310 2.24096 3.54919 1.07702 2.46948 3.84551

0.5 1.10239 2.50353 3.84717 0.98185 2.27079 3.55908 1.10351 2.50338 3.84747

0.6 1.28844 2.53801 3.84915 0.99936 2.30097 3.56913 1.12843 2.53798 3.84902

0.7 1.15180 2.57311 3.85015 1.01566 2.33129 3.57925 1.15179 2.57309 3.86004

0.8 1.17364 2.60850 3.85045 1.03080 2.36155 3.58930 1.17364 2.60849 3.85040

0.9 1.19402 2.64396 3.85059 1.04484 2.39154 3.59912 1.19401 2.64395 3.85055

1.0 1.21300 2.67923 3.85084 1.05784 2.42108 3.60849 1.21299 2.67927 3.85080

The first three non-dimensional frequencies Ωi are calculated as in the Exam-
ple 5, and A0 and I0 are the area and the moment of inertia of the initial section.
The simply supported beam and the clamped-clamped beam are examined in the
Tables 9–10, where the results obtained by the Differential Quadrature Method

Table 9. Numerical comparison between four different discretization methods,
for simply supported two-segment beam. The first three non-dimensional

frequencies are given for various values of α and γ = L1/L.

α = 0.1 α = 0.2 α = 0.3

γ Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3

0.25

(1) 9.629 38.56 86.84 9.387 37.64 84.86 9.145 36.72 82.87

(2) 9.777 – – 9.681 – – 9.584 – –

(3) 9.627 – – 9.388 – – 9.143 – –

(4) 9.628 38.56 86.85 9.387 37.64 84.87 9.145 36.72 82.89

0.5

(1) 9.447 37.99 85.42 9.018 36.49 81.00 8.583 34.97 78.54

(2) 9.733 – – 9.577 – – 9.404 – –

(3) 9.447 – – 9.037 – – 8.612 – –

(4) 9.446 37.99 85.43 9.018 36.49 82.01 8.583 34.97 78.55

0.75

(1) 9.374 37.56 84.59 8.863 35.62 80.29 8.331 33.64 75.91

(2) 9.525 – – 9.163 – – 8.773 – –

(3) 9.382 – – 8.870 – – 8.338 – –

(4) 9.374 37.56 84.60 8.862 35.62 80.20 8.331 33.64 75.92
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Table 10. Numerical comparison between four different discretization method,
for clamped-clamped two-segment beam. The first three non-dimensional

frequencies are given for various values of α and γ = L1/L.

α = 0.1 α = 0.2 α = 0.3

γ Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3

0.25

(1) 22.000 60.46 118.38 21.625 21.250

(2) 22.059 – – 21.729 – – 21.383 – –

(3) 22.005 – – 21.635 – – 21.266 – –

(4) 22.000 60.46 118.42 21.625 59.25 115.92 21.250 58.04 113.41

0.5

(1) 21.675 59.55 116.48 20.971 57.41 112.03 20.262 55.25 107.52

(2) 21.979 – – 21.567 – – 21.134 – –

(3) 21.681 – – 20.985 – – 20.287 – –

(4) 21.675 59.56 116.50 20.971 57.42 112.04 20.261 55.25 107.54

0.75

(1) 21.432 58.89 115.31 20.471 56.06 109.65 19.488 53.16 103.85

(2) 21.507 – – 20.641 – – 19.778 – –

(3) 21.435 – – 20.476 – – 19.497 – –

(4) 21.432 58.90 115.35 20.471 56.06 109.68 19.488 53.17 103.88

(DQM), the optimized Rayleigh–Ritz method and the Finite Element Method
(FEM) are compared with the CDM results. Even in this case, our results give
an excellent lower bound.

8. A similar structure has been studied in [10], where the free vibration
frequencies of a two-beam structure on flexible supports are exactly calculated.
The first beam constant has a cross-section, the second beam is defined by the
following taper law:

(3.10) A (z) = A1η
n, I (z) = I1η

n+2,

with:

(3.11) η

[
1 +

α− 1
L (1− β)

z

]
,

and β is a multiplying factor of the span of the first beam, α =
h2

h1
,

b2

b1
= 1

and A1, I1 are the cross-sectional area and the moment of inertia of the initial
section.

For a clamped-clamped beam, the first five free non-dimensional vibration

frequencies pi =

√√√√
√

ρA1ω
2
i L

4

EI1
are given in Tables 11–12 for various β and α

values, as obtained using an exact approach and our discretization method.
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Table 11. Numerical comparison between the results in [9] and CDM.
Two-segment beam β=0 and β=0.2.

α β = 0 β = 0.2

p1 p2 p3 p4 p5 p1 p2 p3 p4 p5

1
4.73 7.8532 10.9956 14.1372 17.2788 – – – – –

4.73 7.8529 10.9949 14.1358 17.2764 – – – – –

1.25
5.0098 8.3172 11.6449 14.9718 18.2988 4.9828 8.2468 11.5303 14.8165 18.1036

5.0097 8.3168 11.6442 14.9703 18.2962 4.9827 8.2464 11.5290 14.8136 18.0985

1.43
5.1933 8.6210 12.0699 15.5179 – – – – – –

5.1946 8.6230 12.0724 15.5206 – – – – – –

1.5
5.2636 8.7374 12.2325 15.7268 19.2213 5.2104 8.5986 12.0071 15.4214 18.8356

5.2634 8.7370 12.2317 15.7253 19.2186 5.2103 8.5982 12.0057 15.4183 18.8307

1.54
5.3007 8.7988 12.3184 15.8373 – – – – – –

5.3021 8.8009 12.3210 15.8401 – – – – – –

1.66
5.4215 8.9985 12.5975 16.1958 – – – – – –

5.4152 8.9879 12.5824 16.1759 – – – – – –

1.75
5.4976 9.1242 12.7732 16.4215 20.0700 5.4186 8.9189 12.4404 15.9700 19.4973

5.4975 9.1239 12.7724 16.4198 20.1671 5.4185 8.9185 12.4390 15.9669 19.4924

2
5.7159 9.4848 13.2769 17.0684 20.7145 5.6112 9.1246 12.8398 16.4741 20.1029

5.7157 9.4844 13.2760 17.0666 20.8570 5.6111 9.2142 12.8384 16.4709 20.0982

2.25
5.9213 9.8238 13.7502 17.6761 21.6024 5.7910 9.4904 13.2118 16.9418 20.6627

5.9211 9.8233 13.7492 17.6742 21.5992 5.7910 9.4899 13.2103 16.9386 20.6581

2.5
6.1159 10.1447 14.1981 18.2512 22.3047 5.9601 9.7498 13.5609 17.3789 21.1841

6.1157 10.1412 14.1971 18.2492 22.3012 5.9600 9.7493 13.5594 17.3758 21.1796

2.75
6.3012 10.4501 14.6243 18.7983 22.9727 6.1199 9.9954 13.8907 17.7899 21.6727

6.3010 10.4496 14.6232 18.7961 22.3691 6.1199 9.9950 13.8891 17.7867 21.6683

3
6.4785 10.7421 15.0317 19.3211 23.6112 6.2719 10.2293 14.2038 18.1780 22.1329

6.4783 10.7416 15.0305 19.3189 23.6074 6.2719 10.2288 14.2022 18.1749 22.1286

4
7.1242 11.8048 16.5134 21.2222 25.9321 6.8185 11.0756 15.3250 19.5488 23.7544

7.1240 11.8041 16.5119 21.2194 25.9275 6.8185 11.0751 15.3232 19.5459 23.7501

5
7.6947 12.7427 17.8202 22.8984 27.9780 7.2960 11.8213 16.2894 20.7025 25.1251

7.6944 12.7419 17.8183 22.8951 27.9724 7.2960 11.8206 16.2876 20.6999 25.1205

10
9.9421 16.4342 22.9582 29.4844 36.0136 9.2302 14.7957 19.7536 24.8107 30.1851

9.9412 16.4322 22.9544 29.4779 36.0034 9.2301 14.7949 19.7524 24.8078 30.1771
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Table 12. Numerical comparison between the results in [9] and CDM.
Two-segment beam β=0.4 and β=0.6.

α β = 0.4 β = 0.8

p1 p2 p3 p4 p5 p1 p2 p3 p4 p5

1.25
4.9557 8.1761 11.4107 14.6498 17.9006 4.9355 8.1007 11.3025 14.4934 17.7072

4.9556 8.1758 11.4100 14.6481 17.8979 4.9354 8.1003 11.3017 14.4917 17.7042

1.5
5.1583 8.4647 11.7714 15.0992 18.4409 5.1286 8.3130 11.5711 14.8030 18.0716

5.1582 8.4643 11.7707 15.0976 18.4383 5.1285 8.3126 11.5702 14.8013 18.0684

1.75
5.3450 8.7264 12.0917 15.5022 18.9192 5.3117 8.5015 11.8086 15.0804 18.3887

5.3449 8.7261 12.0910 15.5005 18.9166 5.3116 8.5011 11.8077 15.0786 18.3854

2
5.5203 8.9661 12.3812 15.8689 19.3490 5.4852 8.6737 12.0202 15.3335 18.6705

5.5203 8.9657 12.3804 15.8671 19.3464 5.4851 8.6733 12.0192 15.3318 18.6671

2.25
5.6874 9.1869 12.6465 16.2057 19.7399 5.6491 8.8350 12.2099 15.5672 18.9256

5.6873 9.1866 12.6457 16.2040 19.7373 5.6490 8.8346 12.2089 15.5654 18.9221

2.5
5.8481 9.3913 12.8926 16.5173 20.0994 5.8032 8.9891 12.3813 15.7842 19.1603

5.8480 9.3910 12.8918 16.5155 20.0968 5.8031 8.9886 12.3803 15.7823 19.1567

2.75
6.0040 9.5812 12.1233 16.8069 20.4332 5.9473 9.1383 12.5373 15.9862 19.3793

6.0039 9.5809 12.1225 16.8052 20.4304 5.9472 9.1379 12.5362 15.9843 19.3757

3
6.1559 9.7581 13.3414 17.0773 20.7456 6.0814 9.2844 12.6805 16.1745 19.5859

6.1558 9.7578 13.3405 17.0755 20.7428 6.0813 9.2839 12.6793 16.1725 19.5822

4
6.7646 10.3592 14.1231 18.0024 21.8410 6.5221 9.8517 13.1664 16.8069 20.3242

6.7345 10.3589 14.1221 18.0007 21.8377 6.5219 9.8513 13.1650 16.8046 20.3230

5
7.2772 10.8334 14.8061 18.7435 22.7672 6.8326 10.3908 13.5838 17.2834 20.9536

7.2771 10.8331 14.8050 18.7417 22.7637 6.8323 10.3903 13.5824 17.2807 20.9495

10
9.4280 12.4761 17.2360 21.3717 25.8612 7.4616 12.0636 15.7599 22.7572 26.8834

9.4279 12.4755 17.2349 21.3692 25.8572 7.4610 12.0623 15.7585 18.7567 22.7506

9. An interesting two-beams structure has been studied in [9], where the first
beam is defined by the following taper ratio:

(3.12)

A(z) = A1

[
1 +

α1 − 1
βL

z

]n

,

I(z) = I1

[
1 +

α1 − 1
βL

z

]n+2

,

0 ≤ z ≤ βL,
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whereas for the second beam we have:

(3.13)

A(z) = A1

[
α1α2 − α1

L(1− β)
(z − L) + α1α2

]n

,

I(z) = I1

[
α1α2 − α1

L(1− β)
(z − L) + α1α2

]n+2

and βL ≤ z ≤ L.
The structure is supposed to be clamped at left, and resting on an elastically

flexible end at right.
The first three free non-dimensional frequencies pi, as in Table 11, are given

in Tables 13–14 for various β, α and various materials. Even in this last case,
our results present an excellent lower bound.

10. The numerical example which is presented below was taken from Ref. [11]:
in this paper, the problem of vibration of beam with rectangular cross-section,
where the base is constant and the height is variable, was studied. In this case,
the variation laws of cross-sectional area and moment of inertia are given by

(3.14)

A(z) = A0

( z

L
(α− 1) + 1

)
,

I(z) = I0

( z

L
(α− 1) + 1

)3
,

where A0 and I0 are the cross-sectional area and the moment of inertia of the
initial beam, respectively, and α = h2/h1 = 0.5, where h1 and h2 are the initial
and final beam’s cross-section height, respectively.

By using the data of the numerical example, p. 461 of the paper [11], the
vibration frequencies are determined:

(3.15) fi =
ωi

2π
.

In particular, in Table 15 the first seven vibration frequencies for a simply
supported beam (Example (a)) and the first five vibration frequencies for a can-
tilever beam (Example (b)) are reported.

The problem of vibration frequencies is solved using the presented method
and the Chebyshev series approximation: the obtained results show an excellent
agreement.

In Appendix 1 the numerical program, using “Mathematica” code, is reported.
The data refer to this particular case, as can be noted by the cross-sectional areas
and moment of inertia expressions which are identical to those of Formula (3.14).



NATURAL VIBRATION FREQUENCIES OF TAPERED BEAMS 61

Table 13. Numerical comparison between the results in [10] and CDM.
Two-segment beam with the first constant segment and the second variable

segment. Wedge beam.

α1 = α2 = 1.5

β p1 p2 p3

Single material
ε = 1
ν = 1

0.2
2.960984 6.623893 10.653342
2.961004 6.623736 10.652826

0.4
2.955257 6.339284 10.116494
2.955256 6.339196 10.116103

0.6
2.831723 6.092949 9.714487
2.831713 6.092845 9.714025

0.8
2.610069 5.874837 9.440699
2.609593 5.874592 9.439987

Aluminium
ε = 3

ν = 2.88889

0.2
3.341329 7.266658 10.982127
3.341349 7.626415 10.981648

0.4
3.638804 6.379341 10.365182
3.638802 6.379263 10.364734

0.6
3.352323 6.436236 9.652822
3.352308 6.436130 9.652349

0.8
2.809352 6.321979 9.990769
2.809358 6.321652 9.989850

Steel-Aluminium
ε = 0.33333
ν = 0.34615

0.2
2.448228 6.152010 10.232177
2.448235 6.151898 10.231652

0.4
2.310298 5.987174 10.093364
2.310299 5.987064 10.092935

0.6
2.255394 5.732798 9.537642
2.255445 5.732686 9.537146

0.8
2.258520 5.874837 9.440699
2.258414 5.453477 9.047567

Tungsten-Aluminium
ε = 0.2
ν = 0.15

0.2
2.223087 6.381117 10.567467
2.224018 6.380980 10.566875

0.4
2.050444 5.865405 10.710794
2.051179 5.865266 10.710309

0.6
2.006496 5.539217 9.568246
2.006565 5.539101 9.567671

0.8
2.060400 5.308516 8.883911
2.060452 5.308366 8.883313

Aluminium-Tungsten
ε = 5

ν = 6.66666

0.2
3.223087 7.139275 10.91989
3.221416 7.138936 10.619406

0.4
3.797734 6.077439 9.997253
3.797706 6.077367 9.996747

0.6
3.527982 6.354572 9.292952
3.527960 6.354485 9.292463

0.8
2.858571 6.472948 10.206816
2.858605 6.472582 10.205816
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Table 14. Numerical comparison between the results in [10] and CDM.
Two-segment beam with the first constant segment and the second variable

segment. Cone beam.

α1 = α2 = 1.5

β p1 p2 p3

Single material
ε = 1
ν = 1

0.2
3.241992 6.890704 10.872190
3.241997 6.890536 10.871682

0.4
3.295517 6.585544 10.284771
3.295519 6.585466 10.284399

0.6
3.135124 6.355970 9.883609
3.135132 6.355880 9.883170

0.8
2.826031 6.098033 9.655944
2.826067 6.097798 9.655200

Aluminium
ε = 3

ν = 2.88889

0.2
3.601942 7.570925 11.289006
3.601924 7.570652 11.288512

0.4
4.013659 6.625189 10.579703
4.013651 6.625127 10.579268

0.6
3.653699 6.759004 9.818821
3.653686 6.758905 9.8183760

0.8
3.005513 6.525742 10.241486
3.005487 6.525412 10.240488

Steel-Aluminium
ε = 0.33333
ν = 0.34615

0.2
2.719027 6.366531 10.431558
2.719020 6.363403 10.431012

0.4
2.591143 6.257891 10.208067
2.591070 6.257762 10.207648

0.6
2.5200643 5.982285 9.7002030
7.520663 5.982184 9.6997084

0.8
2.484248 5.647080 9.2249650
2.484001 5.646931 9.224344

Tungsten-Aluminium
ε = 0.2
ν = 0.15

0.2
2.485453 6.604193 10.794795
2.485391 6.604093 10.794207

0.4
2.303951 6.171426 10.786371
2.303799 6.171287 10.785913

0.6
2.247777 5.799427 9.727984
2.247773 5.799312 9.727416

0.8
2.280355 5.486273 9.059468
2.280369 5.486060 9.058860

Aluminium-Tungsten
ε = 5

ν = 6.66666

0.2
3.444017 7.392360 10.993261
3.444000 7.392008 10.992690

0.4
4.142424 6.344458 10.200137
4.142405 6.344406 10.199647

0.6
3.816945 6.688564 9.456933
3.816922 6.688486 9.456470

0.8
3.048076 6.658406 10.461855
3.048054 6.658042 10.460753
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Table 15. Numerical comparison between the results in [11] and CDM.
Non-prismatic beam. Example (a) – a simply supported beam.

Example (b) – a cantilever beam.

Example (a) f1 f2 f3 f4 f5 f6 f7 f8

This paper 188.44 757.97 1703.89 3027.50 4728.90 6808.07 9264.89 12099.20

[11] 188.44 757.99 1703.97 3027.75 4729.39 6808.80 9286.04 12103.70

Example (b)

This paper 85.66 455.80 121.55 2350.21 3864.60 5746.44

[11] 85.66 455.80 1215.48 2349.93 3862.32 5752.45

11. Finally, in a recent paper [23] the free vibration frequency of an isotropic
beam have been found, for a variable cross-section with an exponential law:

(3.16)
A(z) = A0e

δz,

I(z) = I0e
δz,

where δ is the non-uniformity parameter.
In Table 16 the free vibration frequencies given in Table 1, p. 82 of the paper

[23], have been reproduced using CDM. The agreement is very good, both for
simply supported beams and for clamped-clamped beams. On the contrary, the
discrepancies for the first two free frequencies in cantilever beams are noticeable,
both for δ = −1,−2 and for δ = 1, 2, so that we have reproduced the calculations,
as described in [19], and the newly calculated results show an excellent agreement
with the CDM.

Consequently, it seems that the values given in [23] are misprinted.

4. Conclusions

The free vibration frequencies of tapered beams are studied, for arbitrary
variation laws of cross-sectional area and moments of inertia, in the presence
of rotationally and axially flexible supports. The beam is viewed as a set of
rigid bars linked together at discrete sections, in which stiffness and mass are
concentrated, and the resulting system with finite number of degrees of freedom
is so simple to analyze to permit a careful discretization, using a large number of
rigid bars (in our case, 300 bars). Several examples are treated in some details,
comparing exact and approximate results from the literature, and the proposed
approach always gives excellent results.
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