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The paper presents a complete set of geometric relationships for logarithmic measures
of longitudinal, circumferential and radial strains arising in bending of thin- and thick-walled
pipes. The strain can be determined at each plane parallel to the principal plane of bending and
at each plane perpendicular to them, so that each point of the bending zone is accounted for.
The relationships have a direct reference to engineering practice since they express strains as
functions of pipe geometry and bending process variables. The calculation results were compared
with experimental data for the bend angle equal to 180° and the bending zone range index equal
to 1 and 3. Suitable plots are incorporated.

NOTATIONS
R bending radius, equal to the radius of the neutral surface;
Ro  radius of the neutral surface following bending;
Yo displacement of the neutral surface with respect to the initial position;

dows  outside diameter of a bent pipe (OD - engineering notation);
Tout  outside radius of a bent pipe;
din inside diameter of a bent pipe (ID — engineering notation);

Tin inside radius of a bent pipe;
go initial thickness of a bent pipe;
R larger running radius of a bend associated with longitudinal strain;
i smaller running radius of a bend;
gi running thickness of a bend within the bending zone;
(i =1 for elongated fibres, 7 = 2 for compressed fibres);
ag bending angle measured over the bending zone, a, € [0°; 180°];
k coefficient of the bending zone range as determined in actual tests. In theory, k € [1; o],

but in practice & € [1; 10] should be sufficient. The coefficient may be also
meant to determine the ratio of agmax = 180° to the actual value of ag;

Qo bend angle (the angle by which a former or die is rotated); in theory, ap € [0°;00).
Obviously, within the bending zone the two angles are equal (ao = ay);

a running angle of the bending zone determined at the proncipal bending plane and at

planes parallel to it, a € [0"; 92&};
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8 running angle determined at planes perpendicular to the bending plane,
B € [0°;90°);
I3 angle defining the bending zone at the principal plane of bending and at planes
parallel to it, £ € [0°; aol;
0 angle defining the cross-section contour of a bend as a closed path, 6 € [0°;360°];
P1 logarithmic longitudinal strain at the bending plane;
©2 logarithmic circumferential strain at the plane perpendicular to the bending plane;
©3 logarithmic radial strain along the thickness;
pi strain intensity, equivalent strain;

gmin  minimum wall thickness at the elongated area;
gmax Mmaximum wall thickness at the compressed area;

s wall thickness index for a pipe,
s= Zigo_t’ s < 0.2 — thin-walled pipe, s > 0.2 — thick-walled pipe, after [1};
e ovality index of the cross-section, after [1};
Ar ovality index of the cross-section, after [4];
di outside pipe diameter as measured on finishing the bending process;

z1,22  vertical and horizontal measure, respectively, associated with radius .

1. INTRODUCTION

Piping stress and strain analysis is a complex and highly involed subject. This
paper is concerned with only one fundamental problem — the determination of
deformational characteristics of pipe bends fabricated from initially straight tube
sections. The bends are regarded to be critical components of piping systems and
their structural analysis is of utmost importance in the design.

The paper is aimed at deriving basic relationships for geometrical measures of
deformation in bending of both thin- and thick-walled pipes. As it is generally
known, the wall in a bent pipe gets thinner in the elongated fibre area and
thicker in the area of compressed fibres. As a result, the initially circular cross-
section assumes an oval form. Additionally, the overall shape of a pipe length is
disturbed by buckling effects. The paper will be focussed on the ovalization effect
due to the fact that wall thinning is not fully compensated by wall thickening
at the other end of the diameter. The inescapable phenomena of wall thinning/
thickening and warping as well as cross-section ovalization should be always under
strict control [1].

The paper presents geometrical relationships for logarithmic measures of lon-
gitudinal, circumferential and radial strains. The measures may be determined
at all planes parallel to the principal plane of bending and also at each plane per-
pendicular to them, i.e. throughout the whole bending zone. The assumed model
accounts for material properties through one parameter defining the bending zo-
ne range. An additional assumption holds that the pipe material behaves like an
. incompressible continuous medium. Despite these limitations, the results yielded
by the model are in very good agreement with experimental data presented in
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[2], especially for elongated fibres. The relationships for logarithmic components
of permanent strains invole the following arguments: bending radius and angle,
geometrical characteristics of a pipe, angular coordinates a, 3 — used as parame-
ters in defining the bending zone, and index k - for specifying the bending zone
range.

Premature failure of pipe bends encountered in engineering practice are usu-
ally attributed to inadequate methods of structural analysis being currently in
use in the design of pipelines [3 - 6]. A specific weakness of the available desi-
gner’s knowledge is the lack of a precise method for determining an allowable
wall thickness distribution at the apex of the maximum strain zone. With prior
knowledge of strain and stress intensity components within the whole bending
zone and especially at its apex portion, the pertinent stress analysis becomes
much more reliable and so is the bend manufacture.

The bending zone is usually composed of two portions: bending zone (varying
strain zone) and plateau zone (constant maximum strain zone). The first portion
is found at the ends of a bend and its extent is affected by: the particular bending
technique used, bending radius, type of material, pipe geometry. The available
experimental evidence shows that more protruding and “sharp” mandrels toge-
ther with smaller radii of bending and less ductile materials act all to decrease
the bending zone exent and vice versa. The extreme cases involve either almost
negligible bending zones or their expansion to cover the whole bend (with no
platean portion in between) [1].

There is enough of forensic analysis evidence to state that the onset of da-
mage processes usually takes place near the middle of the elongated bend side.
Initial microcracks grow fairly fast and since there are no crack arrest mecha-
nisms, catastrophic leakage becomes imminent [4 - 6]. It can be inferred from
statistical data [4 — 7] that time to rupture in bends subjected to internal pres-
sure can be up to three times shorter than in straight portions of a pipeline. It
is seen therefore that a sound assessment of strain magnitudes and their effect
on structural material properties is of great importance to a designer of piping
systems and especially — power pipelines [3 - 8].

The author believes that this analysis would have gained a lot from being
confronted by a richer collection of experimental data. Unfortunately, he could
not find the data other than for a particular bending angle of 180°. It is to be
also noted that due to a wide range of outside diameters (4 — 600 mm) and wall
thickness (0.2 — 50 mm), a single model is hardly capable of covering all com-
binations of pipe size and bending process parameters. Selection of a particular
bending technique is influenced by various factors: type of material and pipe di-
mensions, bending radius and bending angle, dimensional accuracy required, size
of production lots, type of intended pipeline application, etc.
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2. BASIC ASSUMPTIONS

It is assumed that geometry of deformation in pipe bending is the same
as for incompressible continuous medium whose properties are to some extent
accounted for by the bending range coefficient k. The neutral axis is determined
by the bending radius R and strains are equal to zero at the axis and at the ends
of the bending zone. The neutral axis separates compressed fibres from those
being in tension and so it is also the line of separation for stresses of opposite
signs (see, e.g., [9 — 11]). Another assumption holds that volume of material prior
to and after bending remains the same. It is further assumed that the inner pipe
radius remains unchanged, i.e. no cross-section flattening is allowed. There are
sound grounds to this assumption since well-made and precisely aligned mandrels
have been shown to preserve the cross-section geometry [12 — 14]. The effect of
tool friction is neglected as are all the thermal effects associated with large-scale
deformation involved in the pipe bending operation. The presented model of
pipe bending assumes the deformation process to be quasi-static and therefore
no dynamic effects are taken into account.

Principal parameters and quantities involved in the bending operation are
shown in Fig. 1.

180°

[Fia. 1.]
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Fic. 1. a, b. Geometrical quantities in the pipe bending description.

3. BASIC RELATIONSHIPS

The condition of constant volume may be written as

(31) R’i Ty g = R Tout * 90,
where
(32) R"L = Ri(Ralrinagiaagaa;/ja ]‘C),

is the larger running bending radius whose precisely defined form is to be used
in determining longitudinal strains, and

dout din

Ti = Tin + Gi, Tout = 9 Tin = 7; Tin = Tout — 40,

(subscript i = 1 and (+) sign refer to elongated fibres while i = 2 and (—) sign
refer to compressed fibres).

It is reasonable to assume from the geometry of pipe bending that for the
larger running radius R; which is determined both within the zone of bending,
and at the plane of bending the corresponding component measures may be given
by
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21 = (Tin + ¢;) - cos 3 (cos ka — cos k%) ,
(3.3)
20 = (Tin + ¢;) - B (sin k% — sin ka) ,

L.e. z; and 2, are vertical and horizontal measures, respectively.

A thorough analysis of the problem and comparison of the model data with
experimental ones presented in [1, 2] led the author to use a formula for z1 for the
bending angle equal to 180° in the form put forward in the same source, namely

(3.4) Ry = R (rin + g;) - cos 3 <cos ko — cos k-(;—g> .

The relationship is a very good approximation of the experimental data from
[1, 2], especially for elongated fibres, as can be seen in the plots. It can be easily
demonstrated that the two definitions in (2.2) become equivalent for o = ag/2
and for (ka = 0° and kay = 180°). When ka — 0°, then a = 0°, since k # 0.

3.5 L
( . ,
. Tz 90
where
—*In& =In I —lniq—i
¥ = R s w2 = Tout, 3 = 9 .

Hence, the condition of incompressibility is fulfilled:

(3.6) ®1+ @2+ 3 =0.

Substitution of (2.3) into (2.4),_4 yields the following formulas:

R+ (rin + g;) - cosf3 (cos ko — cos k%)

(3.7) @y = InIn T i
Tout
Gi
= In Z=.
¥3 @

Intensity of strain has the following form [14 - 16]:

5
(3.8) i = \/5 (3 + 3 +22).



A MODEL OF DEFORMATION GEOMETRY IN PIPE... 9

Inserting Eqs (3.6) into (3.5) and performing suitable transformations we arrive
at the following algebraic equation of the third order with respect to the running
thickness of a bend across the bending zone:

(3.9) a-gi+b-gitcgit+d=0,

where

a == <cos ka — cos kg;) - cos 3,
o
b = [R:l: 27, - <cos ka — cos k—;) -cosﬁ] ,

c = [R. + rin (cos ko — cos kc—;i> - COS ﬁ] * Tin,

d=—-R- Toutgo-

The equation is satisfied by a single real root that is a sought-for solution and
two complex roots.

As can be seen, the running thickness g; of a bend within the bending zone
depends on: bending radius R, outside and inside pipe radii (Tout and yy), initial
thickness go, bending angle o, angles a and 3 determining location of a point
within the bending zone for fibres in tension and compression, respectively, and
coefficient & of the range of bending within the bending zone.

The solution to the equation, the corresponding strain and intensity compo-
nents were obtained ising a computer program. The results are shown as plots
Juxtaposed with those representing test data after [2].

Solving a similar equation involving the second measure (3.2) resulted in
faster changes of g; and larger values of measures ¢y, @2, 3 and ; within the
bending zone. As was observed earlier, for a = a,/2 and (ka = 0°; ko, = 180°)
the two representations become equivalent and the results are equal.

The second measure (3.2) should for processes involving larger changes in
pipe wall thickness and higher values of strain and strain intensity components.
It is to be noted that thickness and strain distributions resulting from adopting
that measure for & = 1 were of doubtful value.

Throughout the whole plateau zone formulas (3.6) and (3.8) should be used
with (coska = 1 and cosay/2 = 0), while the second measure (3.2) — with
(sinka = 0 and sincy/2 = 1). It should be added that Eq. (3.8) enables an
inverse problem to be solved, i.e. a critical bending angle value Qger May be
determined that corresponds to a critical wall thickness value at the wall apex
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(a = 3 =0°). For the elongated fibres this will be oviously the lowest allowable
thickness gj,;. The corresponding relationships then hold:

Qger
R+ (Tin +glall) : <1 —cosk g )

Pall = In 7 )
(3.10)
()02 = 1n m’ 903 — ln Qlallj
Tout g0
and
(3.11) @ Glan +b- Gan + ¢ gran + d = 0,
where
[a7ven
= (1 coni=),

a ( cos 5

b= {R + 2rin (1 — cos k—a‘écr” ,

C = [R‘f‘ Tin . <1 —_— COSk%“)] . Tiny

d = ~-R. Tout90-
Hence ,
(3.12) cos <k9ﬂ> —{—R._Tout 90 — Gian — Tin " J1all

2 glfan +2-rip - gi?a]l + 72 - g1an

Proceeding in a similar way one determine a critical bending angle value g
based on a value of ;. derived from the tensile test for a given material. For
this purpose, formulas (3.7) and (3.9) or the plot ¢; from Fig. 5 are used for an
assumed coefficient & value. Other parameters of the bending operation could be
obtained from suitable nomograms (not available yet).

4. INITIAL AND BOUNDARY CONDITIONS

The relationship derived in Sec. 2 fulfil the following initial and boundary
conditions: o

a) when o = 7g = 0 - bending process begins (isn’t bending)

b) a = % # 0 — beginning and end of the bending zone,

¢) B = 90° - location of the neutral surface within the bending zone;
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it follows then

(4.1) R; = R, Ti = Tout, gi = go

and
w1 = 2 = p3 =0, i = 0;

d) ka = 3 = 0° — apex point of the bending zone;
if, additionally, kag € (0°;180%), then
to

Ri = R&(rin +gi) - (1 — cos (k—2—>> )

Ty = Tin + Gi;

(4.2)

e) if ko = B = 0° and kag = 180°, then the quantities /;, ; and g; reach their
extremes (maximum or minimum values). At the same time this is the condition
for the onset of the plateau zone at this point.

For the elongated fibres we get the following expressions:

g1 = Ymin,

(4.3) Ry = R+ (Tin + gmin),
T1 = Tin + Ymin,

and for the compressed ones
g2 = YImax;

(4.4) Ry = R — (Tin + gmax),
T2 = Tin + gmax-

The coefficients a, b, ¢ present in Eq. (3.7) will assume in this case the following
form:

a =1,
(4.5) b= (R+2 my),
c = (R + Tin) * Tin,
while the coefficient d = —R -7, - gg will remain the same.

Principal components of the logarithmic strains and strain intensity also reach
their extremes but these are different for each type of fibres.
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EXAMPLE
The plots yield the following values:
elongated fibres compressed fibres
Gmin = 3.684 Jmax = 599
ry = 21.434 ro = 23.746
Ry = 101.434 Ry = 56.254
p = 0.2553 po = 0.3748

The above data may serve as a basis for determining the ovalization index acco-

unting for the wall thickness being different when measured across the areas in

tension and compression. For the sake of clarity we take the middle point of a

bend or, in other words, the apex point of the bending zone for & = 1.
According to [1]

(4.6) o= G2

da

- 100%,
where

d1 = 275 + Gmin + Jmax;
dy =2-17.75 + 3.684 + 5.996,
di = 45.18

and dy = doy to comply with assumptions listed in Sec. 1.
Hence e 22 1.53%.
According to [5]

L 2-(di—dy)

4.7
(4.7) dy + dg

- 100%

hence A = 1.52%.

5. ANALYSIS OF THE RESULTS

Figure 2 presents computational results for the wall thickness g; at the elon-
gated fibre area vs bending angle at a point with angle coordinates ka = 3 = 0°
(apex point of the bending zone) for pipe OD 44.5 x 4.5, R = 80 mm (R =
1.8 X dqyt) made of St 35.8 steel according to DIN 17175 [2].

The forthcoming discussion will be concerned primarily with the behaviour of
elongated fibres since they conform to the theory particularly well. The compres-
sed fibres will be discussed only in a short commentary due to severe shortcoming
of the model in those areas.
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FIG. 2. Variation of the wall thickness at the apex point of the elongated area.

Figure 3 gives a comparison of results obtained from equations derived in
Sec. 2 of this paper with those obtained from tests presented in [2]. The bending
angle was ag = 180° as measured at the principal plane of bending, i.e. for 3 = 0°.
As can be seen from the plot, the 1, 2, w3 values for the apex point of the
bending zone (a = 3 = 0°) and within the elongated fibre area are in very good
agreement with the experimental data. They do not coincide so well for the whole
angle range £ ~ but the discrepancy can be readily explained: ideal conditions of
bending assumed in the model differ from the actual ones which invole friction, a
projecting mandrel and the limited value of k& = 1. It can be noted that for k =3
the calculated and experimental values agree fairly well, especially for the left-
hand half of the plots in Fig. 3, both the bending zone and plateau zone. For the
right-hand side of Fig. 3, the bending zone may be adequately represented by the
second measure (3.2) or a combination of the two-their arithmetic or geometric
mean. The above statements were confirmed by the author when his calculated
data were compared with experimental ones quoted in [1, 2]. The other data in
(2] obtained in tests using either a not-projecting mandrel or no mandrel at all
conform well with the author’s theory if one assumes & = 2.5. -

For bending with and without a mandrel, the calculated results were also in
fairly good qualitative and quantitative agreement with test data contained in
[1] if one assumed & = 1 for the no-mandrel case and k = 2 for the other.
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The bending zone-plateau zone ratio deserves a short commentary. If & = 1,
then the whole zone defined by the range [0°;180°] is the bending zone without
the plateau portion. When £ tends to infinity, then the bending zone extent tends
to zero and the whole bend area is occupied by the plateau zone. The running wall
thickness g; is then constant and at the bend ends a sharp change in thickness
occur, so to that g; # go(g; < go) for elongated fibres and g; > gy for compressed
ones). The strains ;, ¢ and thickness g; depend solely upon angle 3 rather than
on angles o and «a,. The obvious conclusion is that for each value of k belongin
to the set & € [0°;00) we have ag > a,.

It follows from the presented bending operation model that the maximum
angular range of bending portion is equal to 180° while the bend angle range
is, at least in theory, unlimited. The difference (g — ag) — between the bending
angle and bend angle gives the plateau zone range.

It can be generally stated that coefficient & becomes larger, firstly, with decre-
asing bending radius R, secondly, if a more projecting and stiffer mandrel is used
and, thirdly, if thick-walled tubes fabricated of less ductile material are involved.
A real value of k is also to some degree affected by a particular measurement
method used and its accuracy.

It must be emphasized that for compressed fibres the model fails to predict
true values of strains. The error may exceed then 100%, so the model was found
to be applicable only to the elongated fibres of bent pipes.

Figure 4 is a transformed representation of data from Fig. 3, the transforma-
tion being from the principal plane of bending (3 = 0°) to the principal plane
perpendicular to it (o = 0°). The data from Fig. 4 were compared with expe-
rimental data listed in [2, 6]. As a before, very good agreement was found for
elongated fibres, the opposite being true for compressed fibres. This failure can
be attributed to the fact that incompressible continuous medium is a very good
approximation only for fibres in tension, both in thin- and thick-walled tubes. The
compressed fibres in pipe bending behave differently. In bending with a mandrel,
changes in wall thickness are small (a few percent, as demonstated in [1]) and
1t can be safely assumed that in thin-walled pipes ga = go in compressed areas
[1]. Another phenomenon that is beyond the scope of the model is local buckling
that is especially well pronounced in bending of thin-walled pipes. In order to
arrive at a realistic picture of the pipe’s behaviour, one has to remember that the
neutral surface changes its position in a varying fashion depending on a particu-
lar technique used [11 - 14]. The present model assumes this position to be fixed
and uniquely determined by bending radius R. It seems that in hot free bending
of thick-walled tubes without a mandrel the model will offer an adequate picture
of deformations. The assumed pattern of deformation occuring in the elongated
fibre area was investigated at length elsevhere [15, 17 - 20]. The model of a thin
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shell under plane stress worked out there proved to be very successful in fitting
to test data. Those investigations served as guidance to the present author.
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FiG. 4. Strains at planes perpendicular to the bending plane: after [2] the calculated ones.

Figure 5 present components of the logarithmic principal strains 1, 2, ©3
and the equivalent strain ; as functions of bending angle ko, for the apex point
(a = 3 = 0°). By taking an ordinate equal to a permissible value of deformation
determined for example in a uni-axial tensile test, we can find and allowable
value of bending angle that must not be exceeded in order to keep deformation
below a stipulated level [e.g. A, (uniform) per cent elongation or As-elongation).
Let us have a practical example. From [2] we have ¢ = 0.173 for St 35.8 acc.
DIN17175 and the corresponding bending angle given by the plot is ka, = 145°.
It means that on exceeding this value, the outside stretched layers of a pipe (see
Fig. 4, 0° < 3 < 45°) will undergo deformation exceeding the uniform per cent
elongation value. Plastic deformation at this stage gets unstable and necking
occurs [6]. The wall thickness value g; at the bend apex point corresponding to
kag =2 145° can be found from the plot in Fig. 2 to be equal to 3.9 mm.

Figure 6 shows variation of the wall thickness g; in the elongated fibre area
at the principal plane of bending (5 = 0°) and the principal plane perpendicular
to it (o = 0°), for bend angle ag = 180° and bending angle ko, = 180°. As can
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be seen, the two curves coincide which is a direct consequence of formulas (3.3),
(3.6)1 and (3.8). For other bending angles (kagy # 180°) the plots will be separa-
ted.

6. FINAL REMARKS AND CONCLUSIONS

a. The calculated results prove that the proposed relationship are an adequate
representation of the bending process for stretched layers of thin-walled pipes
(s < 0.2) and for ag = ko, = 180°. The model fails to predict true values for
the compressed fibres since it does not account for flattening of cross-section and
buckling effects.

b. The inadequacy of the model in the compressed area will become less severe
in hot bending of thick-walled pipes since the adverse effects of local buckling will
then tend to diminish.

c. A refined form of the bending operation such as: bend angle ag or bending
angle ay,, allowable minimum wall thickness gia;. The last value sets a limit that
must not be exceeded if local buckling or rupture are to be avoided.

d. Application of the second measure (3.2) for radius R; will result in a
thinner wall and larger deformation within the bending zone, i.e. will call for a
more conservative assessment of the bending angle g, .

e. It is possible to arrive at simpler forms of the relationships ferived in Sec. 2
by neglecting higher-order effects. Such simplified formulas could be useful in
everyday engineering practice.

f. The inverse problem deserves to be noted. It could be stated as follows: what
is the initial wall thickness gq if a given tube is to be bent with a given radius R
and a given bend angle ag to reach the minimum allowable wall thickness value at
the apex point of the stretched area, not smaller than that specified by structural
analysis calculations and the Code requirements? The relevant theory should also
account for conditions set by the Polish national standard [23] that sets allowable
minimum wall thickness and deformation values such that the allowable strain
intensity ;. or (1. does not exceed a stipulated value of (uniform) per cent
elongation for tube material.

g. It is possible to introduce in a formal way some averaged measures for
determining strains within the bending zone such as arithmetic or quadratic
means of the component measures z; and 2. Such averaged measures — as can
be readily proved — are also equal to the component measures (3.2) at particular
points of the process, i.e. for & = ay/2 and (ka = 0° ; koy = 180°). It must be
stressed that measure of the above kind lack any physical sense but are likely to
improve accuracy of the results.
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h. The presented theory might be supplemented with nomograms for simple

determination of admissible values of the deformation measures: QQcry Qgers Piall,
Pially G1all-
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